5 research outputs found

    Vaccines to prevent COVID-19: A living systematic review with Trial Sequential Analysis and network meta-analysis of randomized clinical trials

    Get PDF
    Background COVID-19 is rapidly spreading causing extensive burdens across the world. Effective vaccines to prevent COVID-19 are urgently needed. Methods and findings Our objective was to assess the effectiveness and safety of COVID-19 vaccines through analyses of all currently available randomized clinical trials. We searched the databases CENTRAL, MEDLINE, Embase, and other sources from inception to June 17, 2021 for randomized clinical trials assessing vaccines for COVID-19. At least two independent reviewers screened studies, extracted data, and assessed risks of bias. We conducted meta-analyses, network meta-analyses, and Trial Sequential Analyses (TSA). Our primary outcomes included all-cause mortality, vaccine efficacy, and serious adverse events. We assessed the certainty of evidence with GRADE. We identified 46 trials; 35 trials randomizing 219 864 participants could be included in our analyses. Our meta-analyses showed that mRNA vaccines (efficacy, 95% [95% confidence interval (CI), 92% to 97%]; 71 514 participants; 3 trials; moderate certainty); inactivated vaccines (efficacy, 61% [95% CI, 52% to 68%]; 48 029 participants; 3 trials; moderate certainty); protein subunit vaccines (efficacy, 77% [95% CI, -5% to 95%]; 17 737 participants; 2 trials; low certainty); and viral vector vaccines (efficacy 68% [95% CI, 61% to 74%]; 71 401 participants; 5 trials; low certainty) prevented COVID- 19. Viral vector vaccines decreased mortality (risk ratio, 0.25 [95% CI 0.09 to 0.67]; 67 563 participants; 3 trials, low certainty), but comparable data on inactivated, mRNA, and protein subunit vaccines were imprecise. None of the vaccines showed evidence of a difference on serious adverse events, but observational evidence suggested rare serious adverse events. All the vaccines increased the risk of non-serious adverse events. Conclusions The evidence suggests that all the included vaccines are effective in preventing COVID-19. The mRNA vaccines seem most effective in preventing COVID-19, but viral vector vaccines seem most effective in reducing mortality. Further trials and longer follow-up are necessary to provide better insight into the safety profile of these vaccines.Fil: Korang, Steven Kwasi. Copenhagen University Hospital; DinamarcaFil: von Rohden, Elena. Copenhagen University Hospital; DinamarcaFil: Veroniki, Areti Angeliki. Imperial College London; Reino Unido. St. Michael’s Hospital; CanadĂĄFil: Ong, Giok. John Radcliffe Hospital; Reino UnidoFil: Ngalamika, Owen. University of Zambia; ZambiaFil: Siddiqui, Faiza. Copenhagen University Hospital; DinamarcaFil: Juul, Sophie. Copenhagen University Hospital; DinamarcaFil: Nielsen, Emil Eik. Copenhagen University Hospital; DinamarcaFil: Feinberg, Joshua Buron. Copenhagen University Hospital; DinamarcaFil: Petersen, Johanne Juul. Copenhagen University Hospital; DinamarcaFil: Legart, Christian. Universidad de Copenhagen; Dinamarca. Copenhagen University Hospital; DinamarcaFil: Kokogho, Afoke. Henry M. Jackson Foundation Medical Research International; NigeriaFil: Maagaard, Mathias. Copenhagen University Hospital; Dinamarca. Zealand University Hospital; DinamarcaFil: Klingenberg, Sarah. Copenhagen University Hospital; DinamarcaFil: Thabane, Lehana. Mcmaster University; CanadĂĄFil: Bardach, Ariel Esteban. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Oficina de CoordinaciĂłn Administrativa Parque Centenario. Centro de Investigaciones en EpidemiologĂ­a y Salud PĂșblica. Instituto de Efectividad ClĂ­nica y Sanitaria. Centro de Investigaciones en EpidemiologĂ­a y Salud PĂșblica; Argentina. Instituto de Efectividad ClĂ­nica y Sanitaria; ArgentinaFil: Ciapponi, AgustĂ­n. Instituto de Efectividad ClĂ­nica y Sanitaria; Argentina. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Oficina de CoordinaciĂłn Administrativa Parque Centenario. Centro de Investigaciones en EpidemiologĂ­a y Salud PĂșblica. Instituto de Efectividad ClĂ­nica y Sanitaria. Centro de Investigaciones en EpidemiologĂ­a y Salud PĂșblica; ArgentinaFil: Thomsen, Allan Randrup. Universidad de Copenhagen; DinamarcaFil: Jakobsen, Janus C.. University of Southern Denmark; Dinamarca. Copenhagen University Hospital; DinamarcaFil: Gluud, Christian. Copenhagen University Hospital; Dinamarca. University of Southern Denmark; Dinamarc

    Drug interventions for prevention of COVID-19 progression to severe disease in outpatients : a systematic review with meta-analyses and trial sequential analyses (The LIVING Project)

    No full text
    Objectives To assess the effects of interventions authorised by the European Medicines Agency (EMA) or the US Food and Drug Administration (FDA) for prevention of COVID-19 progression to severe disease in outpatients. Setting Outpatient treatment. Participants Participants with a diagnosis of COVID-19 and the associated SARS-CoV-2 virus irrespective of age, sex and comorbidities. Interventions Drug interventions authorised by EMA or FDA. Primary outcome measures Primary outcomes were all-cause mortality and serious adverse events. Results We included 17 clinical trials randomising 16 257 participants to 8 different interventions authorised by EMA or FDA. 15/17 of the included trials (88.2%) were assessed at high risk of bias. Only molnupiravir and ritonavir-boosted nirmatrelvir seemed to improve both our primary outcomes. Meta-analyses showed that molnupiravir reduced the risk of death (relative risk (RR) 0.11, 95% CI 0.02 to 0.64; p=0.0145, 2 trials; very low certainty of evidence) and serious adverse events (RR 0.63, 95% CI 0.47 to 0.84; p=0.0018, 5 trials; very low certainty of evidence). Fisher's exact test showed that ritonavir-boosted nirmatrelvir reduced the risk of death (p=0.0002, 1 trial; very low certainty of evidence) and serious adverse events (p<0.0001, 1 trial; very low certainty of evidence) in 1 trial including 2246 patients, while another trial including 1140 patients reported 0 deaths in both groups. Conclusions The certainty of the evidence was very low, but, from the results of this study, molnupiravir showed the most consistent benefit and ranked highest among the approved interventions for prevention of COVID-19 progression to severe disease in outpatients. The lack of certain evidence should be considered when treating patients with COVID-19 for prevention of disease progression. PROSPERO registration number CRD42020178787

    Vaccines to prevent COVID-19:A living systematic review with Trial Sequential Analysis and network meta-analysis of randomized clinical trials

    No full text
    BACKGROUND: COVID-19 is rapidly spreading causing extensive burdens across the world. Effective vaccines to prevent COVID-19 are urgently needed. METHODS AND FINDINGS: Our objective was to assess the effectiveness and safety of COVID-19 vaccines through analyses of all currently available randomized clinical trials. We searched the databases CENTRAL, MEDLINE, Embase, and other sources from inception to June 17, 2021 for randomized clinical trials assessing vaccines for COVID-19. At least two independent reviewers screened studies, extracted data, and assessed risks of bias. We conducted meta-analyses, network meta-analyses, and Trial Sequential Analyses (TSA). Our primary outcomes included all-cause mortality, vaccine efficacy, and serious adverse events. We assessed the certainty of evidence with GRADE. We identified 46 trials; 35 trials randomizing 219 864 participants could be included in our analyses. Our meta-analyses showed that mRNA vaccines (efficacy, 95% [95% confidence interval (CI), 92% to 97%]; 71 514 participants; 3 trials; moderate certainty); inactivated vaccines (efficacy, 61% [95% CI, 52% to 68%]; 48 029 participants; 3 trials; moderate certainty); protein subunit vaccines (efficacy, 77% [95% CI, −5% to 95%]; 17 737 participants; 2 trials; low certainty); and viral vector vaccines (efficacy 68% [95% CI, 61% to 74%]; 71 401 participants; 5 trials; low certainty) prevented COVID-19. Viral vector vaccines decreased mortality (risk ratio, 0.25 [95% CI 0.09 to 0.67]; 67 563 participants; 3 trials, low certainty), but comparable data on inactivated, mRNA, and protein subunit vaccines were imprecise. None of the vaccines showed evidence of a difference on serious adverse events, but observational evidence suggested rare serious adverse events. All the vaccines increased the risk of non-serious adverse events. CONCLUSIONS: The evidence suggests that all the included vaccines are effective in preventing COVID-19. The mRNA vaccines seem most effective in preventing COVID-19, but viral vector vaccines seem most effective in reducing mortality. Further trials and longer follow-up are necessary to provide better insight into the safety profile of these vaccines

    Biodiscoveries within the Australian plant genus <i>Eremophila</i> based on international and interdisciplinary collaboration: results and perspectives on outstanding ethical dilemmas

    No full text
    In a cross‐continental research initiative, including researchers working in Australia and Denmark, and based on joint external funding by a 3‐year grant from the Novo Nordisk Foundation, we have used DNA sequencing, extensive chemical profiling and molecular networking analyses across the entire Eremophila genus to provide new knowledge on the presence of natural products and their bioactivities using polypharmocological screens. Sesquiterpenoids, diterpenoids and dimers of branched‐chain fatty acids with previously unknown chemical structures were identified. The collection of plant material from the Eremophila genus was carried out according to a ‘bioprospecting agreement’ with the Government of Western Australia. We recognize that several Eremophila species hold immense cultural significance to Australia's First Peoples. In spite of our best intentions to ensure that new knowledge gained about the genus Eremophila and any potential future benefits are shared in an equitable manner, in accordance with the Nagoya Protocol, we encounter serious dilemmas and potential conflicts in making benefit sharing with Australia's First Peoples a reality
    corecore