34,637 research outputs found

    Testing Lorentz Invariance by Comparing Light Propagation in Vacuum and Matter

    Full text link
    We present a Michelson-Morley type experiment for testing the isotropy of the speed of light in vacuum and matter. The experiment compares the resonance frequency of a monolithic optical sapphire resonator with the resonance frequency of an orthogonal evacuated optical cavity made of fused silica while the whole setup is rotated on an air bearing turntable once every 45 s. Preliminary results yield an upper limit for the anisotropy of the speed of light in matter (sapphire) of \Delta c/c < 4x10^(-15), limited by the frequency stability of the sapphire resonator operated at room temperature. Work to increase the measurement sensitivity by more than one order of magnitude by cooling down the sapphire resonator to liquid helium temperatures (LHe) is currently under way.Comment: Presented at the Fifth Meeting on CPT and Lorentz Symmetry, Bloomington, Indiana, June 28-July 2, 201

    Magnetic phases in the correlated Kondo-lattice model

    Full text link
    We study magnetic ordering of an extended Kondo-lattice model including an additional on-site Coulomb interaction between the itinerant states. The model is solved in the dynamical mean-field theory using Wilson's numerical renormalization group approach as impurity solver. For a bipartite lattice we find at half filling the expected antiferromagnetic phase. Upon doping this phase is gradually suppressed and hints towards phase separation are observed. For large doping the model exhibits ferromagnetism, the appearance of which can at first sight be explained by Rudermann-Kittel-Kasuya-Yosida interaction. However, for large values of the Kondo coupling JJ significant differences to a simple Rudermann-Kittel-Kasuya-Yosida picture can be found. We furthermore observe signs of quantum critical points for antiferromagnetic Kondo coupling between the local spins and band states

    Recurrent shell infall events in a B0.5e star: HD 58978 1979-1988

    Get PDF
    Infall from the circumstellar envelope onto the bright B0.5 IVe star, HD 58978 was studied. The IUE data indicate that the star was surrounded by a low and moderately ionized circumstellar shell at least 12 times between 1979 and 1988. During 6 of these episodes, the signatures of cool circumstellar material were redshifted with respect to the photosphere by 20 to 80 km/sec. The data indicate that the transition from infall to minimal shell absorption can occur in under 10 days, and are consistent either with infall phases lasting up to 6 months, or with infall episodes shorter than 10 to 15 days. The long term behavior of the shell episodes is compared with variability in the stellar wind

    Lifetime Adherence to Physical Activity Recommendations and Fall Occurrence in Community-dwelling Older Adults: a Retrospective Cohort Study

    Get PDF
    Falling is a major health concern for community-dwelling older adults. Regular physical activity has been proposed to prevent falls. The aim of this study was to assess whether the achievement of the 2004 UK Department of Health physical activity recommendations over a lifetime had a protective effect against falling in older people. 313 community-dwelling older adults completed a questionnaire about lifetime physical activity and fall occurrence. There were significantly fewer falls in those who had led an active lifestyle compared to those who had not (χ2Yates=4.568, p=0.033), with a lower relative risk of fall occurrence for the active respondents (RR=0.671) compared to the inactive (RR=1.210). Of those who were sufficiently active in their early adulthood, the decade where there was the biggest decrease in remaining active enough was in the 60s. It is concluded that an active lifestyle may have decreased the likelihood of having a fall in older ag

    IIaO ultraviolet and nuclear emulsion films responses to orbital flights on STS-3, STS-7, STS-8, and STS-40

    Get PDF
    Two types of film were flown on STS-40 space shuttle mission in June 1991. The IIaO special purpose ultraviolet film showed continued desensitization because of various thermal and cosmic ray interactions. The films were exposed to the space orbital environment for 9 days. There were several built-in launch pad delays of the shuttle mission. However, there was adequate monitoring of the temperature variations on board the shuttle that allowed for adequate knowledge of the thermal film history. This IIaO film was flown on the ASTRO I mission and is currently slated for use with the ASTRO II mission. A 50 micron thick IIIford Nuclear emulsion film was also placed on a 175 micron polyester base. The exposure to space produced several cosmic ray interactions that were analyzed and measured using Digital Image Processing techniques. This same nuclear emulsion film was flown on STS-8 and produced a similar number of cosmic ray and thermal interactions. From previous experiments of film using various laboratory electromagnetic radiation sources (e.g., alpha, beta, and neutron particles), we have been able to infer the possible oribtal interactions of both IIaO and nuclear emulsion films. The characteristic responses of IIaO on STS-40 compared favorably to the results obtained from previous STS-7 and STS-8 gas can experiments. The results indicate sufficient evidence correlating increased density on the film with possible cosmic ray, thermal and shuttle out gassing interactions

    Unconventional carrier-mediated ferromagnetism above room temperature in ion-implanted (Ga, Mn)P:C

    Full text link
    Ion implantation of Mn ions into hole-doped GaP has been used to induce ferromagnetic behavior above room temperature for optimized Mn concentrations near 3 at.%. The magnetism is suppressed when the Mn dose is increased or decreased away from the 3 at.% value, or when n-type GaP substrates are used. At low temperatures the saturated moment is on the order of one Bohr magneton, and the spin wave stiffness inferred from the Bloch-law T^3/2 dependence of the magnetization provides an estimate Tc = 385K of the Curie temperature that exceeds the experimental value, Tc = 270K. The presence of ferromagnetic clusters and hysteresis to temperatures of at least 330K is attributed to disorder and proximity to a metal-insulating transition.Comment: 4 pages, 4 figures (RevTex4

    A hybrid model for chaotic front dynamics: From semiconductors to water tanks

    Full text link
    We present a general method for studying front propagation in nonlinear systems with a global constraint in the language of hybrid tank models. The method is illustrated in the case of semiconductor superlattices, where the dynamics of the electron accumulation and depletion fronts shows complex spatio-temporal patterns, including chaos. We show that this behavior may be elegantly explained by a tank model, for which analytical results on the emergence of chaos are available. In particular, for the case of three tanks the bifurcation scenario is characterized by a modified version of the one-dimensional iterated tent-map.Comment: 4 pages, 4 figure

    The Science Around Us: creating culturally relevant STEM-H enrichment activities to engage rural students and community.

    Get PDF
    Presented at: NIH SciEd 2016; May 9-12, 2016; Washington, DC.https://digitalrepository.unm.edu/prc-posters-presentations/1027/thumbnail.jp

    Conditional strategies and the evolution of cooperation in spatial public goods games

    Full text link
    The fact that individuals will most likely behave differently in different situations begets the introduction of conditional strategies. Inspired by this, we study the evolution of cooperation in the spatial public goods game, where besides unconditional cooperators and defectors, also different types of conditional cooperators compete for space. Conditional cooperators will contribute to the public good only if other players within the group are likely to cooperate as well, but will withhold their contribution otherwise. Depending on the number of other cooperators that are required to elicit cooperation of a conditional cooperator, the latter can be classified in as many types as there are players within each group. We find that the most cautious cooperators, such that require all other players within a group to be conditional cooperators, are the undisputed victors of the evolutionary process, even at very low synergy factors. We show that the remarkable promotion of cooperation is due primarily to the spontaneous emergence of quarantining of defectors, which become surrounded by conditional cooperators and are forced into isolated convex "bubbles" from where they are unable to exploit the public good. This phenomenon can be observed only in structured populations, thus adding to the relevance of pattern formation for the successful evolution of cooperation.Comment: 7 two-column pages, 7 figures; accepted for publication in Physical Review
    • …
    corecore