34,883 research outputs found

    Characteristics of advanced hydrogen maser frequency standards

    Get PDF
    Measurements with several operational atomic hydrogen maser standards have been made which illustrate the fundamental characteristics of the maser as well as the analysability of the corrections which are made to relate the oscillation frequency to the free, unperturbed, hydrogen standard transition frequency. Sources of the most important perturbations, and the magnitude of the associated errors, are discussed. A variable volume storage bulb hydrogen maser is also illustrated which can provide on the order of 2 parts in 10 to the 14th power or better accuracy in evaluating the wall shift. Since the other basic error sources combined contribute no more than approximately 1 part in 10 to the 14th power uncertainty, the variable volume storage bulb hydrogen maser will have net intrinsic accuracy capability of the order of 2 parts in 10 to the 14th power or better. This is an order of magnitude less error than anticipated with cesium standards and is comparable to the basic limit expected for a free atom hydrogen beam resonance standard

    An improved atomic hydrogen frequency and time standard

    Get PDF
    Use of a large bulb, long-multipole magnet, automatic tuner and aluminum cavity provides an improved hydrogen maser which is accurate over long periods of time and suitable for tracking station environments

    A user's manual for the method of moments Aircraft Modeling Code (AMC)

    Get PDF
    This report serves as a user's manual for the Aircraft Modeling Code or AMC. AMC is a user-oriented computer code, based on the method of moments (MM), for the analysis of the radiation and/or scattering from geometries consisting of a main body or fuselage shape with attached wings and fins. The shape of the main body is described by defining its cross section at several stations along its length. Wings, fins, rotor blades, and radiating monopoles can then be attached to the main body. Although AMC was specifically designed for aircraft or helicopter shapes, it can also be applied to missiles, ships, submarines, jet inlets, automobiles, spacecraft, etc. The problem geometry and run control parameters are specified via a two character command language input format. The input command language is described and several examples which illustrate typical code inputs and outputs are also included

    Generalized (m,k)-Zipf law for fractional Brownian motion-like time series with or without effect of an additional linear trend

    Full text link
    We have translated fractional Brownian motion (FBM) signals into a text based on two ''letters'', as if the signal fluctuations correspond to a constant stepsize random walk. We have applied the Zipf method to extract the ζ′\zeta ' exponent relating the word frequency and its rank on a log-log plot. We have studied the variation of the Zipf exponent(s) giving the relationship between the frequency of occurrence of words of length m<8m<8 made of such two letters: ζ′\zeta ' is varying as a power law in terms of mm. We have also searched how the ζ′\zeta ' exponent of the Zipf law is influenced by a linear trend and the resulting effect of its slope. We can distinguish finite size effects, and results depending whether the starting FBM is persistent or not, i.e. depending on the FBM Hurst exponent HH. It seems then numerically proven that the Zipf exponent of a persistent signal is more influenced by the trend than that of an antipersistent signal. It appears that the conjectured law ζ′=∣2H−1∣\zeta ' = |2H-1| only holds near H=0.5H=0.5. We have also introduced considerations based on the notion of a {\it time dependent Zipf law} along the signal.Comment: 24 pages, 12 figures; to appear in Int. J. Modern Phys

    Atomic hydrogen maser active oscillator cavity and bulb design optimization

    Get PDF
    The performance characteristics and reliability of the active oscillator atomic hydrogen maser depend upon oscillation parameters which characterize the interaction region of the maser, the resonant cavity and atom storage bulb assembly. With particular attention to use of the cavity frequency switching servo (1) to reduce cavity pulling, it is important to maintain high oscillation level, high atomic beam flux utilization efficiency, small spin exchange parameter and high cavity quality factor. It is also desirable to have a small and rigid cavity and bulb structure and to minimize the cavity temperature sensitivity. Curves for a novel hydrogen maser cavity configuration which is partially loaded with a quartz dielectric cylinder and show the relationships between cavity length, cavity diameter, bulb size, dielectric thickness, cavity quality factor, filling factor and cavity frequency temperature coefficient are presented. The results are discussed in terms of improvement in maser performance resulting from particular design choices

    Hydrogen masers with cavity frequency switching servos

    Get PDF
    The stability of the free-running hydrogen maser is limited by pulling of the unperturbed hydrogen transition frequency due to instability of the cavity resonance frequency. While automatic spin-exchange tuning is in principle the more basic and accurate method, the required beam intensity switching and the long servo time constant result in reduced stability for measuring intervals up to 10(exp 6) seconds. More importantly, the spin-exchange tuning method requires a second stable frequency source as a reference, ideally a second hydrogen maser, to get the best results. The cavity frequency switching servo, on the other hand, has very little effect on the maser short term stability, and is fast enough to correct for cavity drift while maintaining the cavity at the spin-exchange tuned offset required to minimize instability due to beam intensity fluctuations. Not only does the cavity frequency switching servo not require a second stable frequency source, but the frequency reference is the atomic hydrogen radiated beam signal, so that no extra RF connections need be made to the cavity, and externally generated signals that would perturb the hydrogen atom need not be transmitted through the cavity. The operation of the cavity frequency switching stabilization method is discussed and the transient response of the servo and certain other aspects of the technique that have potential for achieving improved basic accuracy are illustrated

    A users manual for the method of moments Aircraft Modeling Code (AMC), version 2

    Get PDF
    This report serves as a user's manual for Version 2 of the 'Aircraft Modeling Code' or AMC. AMC is a user-oriented computer code, based on the method of moments (MM), for the analysis of the radiation and/or scattering from geometries consisting of a main body or fuselage shape with attached wings and fins. The shape of the main body is described by defining its cross section at several stations along its length. Wings, fins, rotor blades, and radiating monopoles can then be attached to the main body. Although AMC was specifically designed for aircraft or helicopter shapes, it can also be applied to missiles, ships, submarines, jet inlets, automobiles, spacecraft, etc. The problem geometry and run control parameters are specified via a two character command language input format. This report describes the input command language and also includes several examples which illustrate typical code inputs and outputs
    • …
    corecore