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Abstract

In this paper we de�ne and study some solution concepts for games in which there does
not have to be total cooperation between the players. In particular, we show the relations of
these solution concepts with the selectope. In this way, we extend the work of Derks, Haller
and Peters, METEOR Research Memorandum, Maastricht, RM=97=016 (revised version, 1998).
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1. Introduction

In game theory it is often assumed that either all players will cooperate or that the
game will be played noncooperatively. However, there are many intermediate possi-
bilities between universal cooperation and no cooperation. In this paper, we discuss a
class of partial cooperation structures and develop a model of cooperative games in
which only certain coalitions are allowed to form. This interesting idea was studied
already in [12] and this line of research was continued by, among others, Owen [14],
van den Nouweland and Borm [13], and Borm, Owen and Tijs [3].
Faigle [8] and Faigle and Kern [9] proposed a model of partial cooperation by

considering a family of feasible coalitions and de�ning a game on this family. In our
model, we will de�ne the feasible coalitions by using combinatorial theory. The model
of Faigle and Kern, and the classical model of a cooperative game are particular cases.
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the paper.
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The central concept of the present paper is the selectope, �rst introduced in [11].
Briey, the selectope contains all ways of distributing the so-called dividends of the
coalitions between their members. Game theoretically, can be seen as imposing rea-
sonable bounds on such distributions. Indeed, for a classical cooperative game the
selectope is equal to the core of a game that arises by imposing on every coalition
additionally the negative dividends of all coalitions in which members of the coalition
under consideration participate. See [5] for further details.
Let us briey outline the contents. We begin by introducing games de�ned on a

family of subsets of a �nite set N and in this context, di�erent solution concepts are
considered. In the �rst section, we de�ne imputations, core and selectope for games
de�ned on a family L⊆ 2N and we establish the relations between these solution con-
cepts. If L=2N we obtain a classical cooperative game. In this case, we know that the
core of a game v is included in the selectope. However, this is not true when L 6= 2N :
In the third section, some conditions on the family L are imposed and we prove that

under those conditions, the selectope contains the core of the game. To this end, closure
spaces are introduced, and in particular, intersecting families. It turns out, roughly, that
the latter structure of partial cooperation is necessary and su�cient for the core to be
always included in the selectope. Moreover, the concept of a closure space generalizes
those partial cooperation structures where the set of feasible coalitions is closed under
taking intersections.
In the last section, we de�ne convex geometries and describe some of their fun-

damental properties. The convex geometry structure generalizes many forms of partial
cooperation studied in the literature, as we will show by means of examples. Moreover,
it facilitates the extension of the de�nition of marginal worth vectors to games with
partial cooperation because the role of permutations of the player set in this de�nition
is played by maximal chains. We introduce the Weber set as the convex hull of the
marginal worth vectors, and we show that for games on convex geometries the Weber
set is contained in the selectope. In classical cooperative games the Weber set plays a
role as a core catcher. Moreover, for the important class of convex games it coincides
with the core and, thus, implies a simple (greedy) algorithm to compute core elements.
Here, as we will see, it singles out distributions according to consistent selectors from
the selectope.

2. Solution concepts for games with partial cooperation

In this section we consider cooperative games in which there is a restriction on the
formation of coalitions; the collection of feasible coalitions is denoted by L: If we
denote the set of players by N = {1; : : : ; n}, then L⊆ 2N and we only assume that
∅; N ∈ L throughout the paper. When {i} ∈ L for all i ∈ N; the family L is called
atomic. Sometimes, additional conditions are required on L. The interpretation is that
only the feasible coalitions are worthwhile in the game. A game on L is a function
v :L → R such that v(∅) = 0.
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We denote by �(L) the set of all games de�ned on the family L. The set �(L)
is a vector space over R, and there is a collection of games which deserves special
consideration because it is a basis of �(L): These unanimity games are de�ned for
any nonempty T ∈ L; and denoted by �T :L → {0; 1}; where

�T (S) =
{
1 if T ⊆ S;
0 otherwise

for every coalition S ∈L. To show linear independence of the collection of unanimity
games is left as an easy exercise to the reader; the spanning property is then obvious,
and the associated coe�cients play a major role in this paper and are derived below.
One of the main topics dealt with in cooperative game theory, is to divide the amount

v(N ) between the players if the grand coalition N is formed. The solution concepts
that we study will prescribe distributions of the worth v(N ) among the players. Let
v :L → R be a game on L. For x∈Rn and S ⊆N de�ne x(S)=∑

i∈S xi, with x(∅)=0.
We introduce the following solution concepts.
The set of preimputations of the game v: L → R is the set

I∗(L; v) = {x ∈ Rn: x(N ) = v(N )};
and the imputation set is given by

I(L; v) = {x ∈ I∗(L; v): xi¿v({i}) for all i ∈ N with {i} ∈ L}:
The core of the game v is the set

Core(L; v) = {x ∈ Rn: x(N ) = v(N ); x(S)¿v(S) for all S ∈ L}:
Note that the core of v is a polyhedron that is not necessarily bounded. However, if
the family L is atomic then the core is a polytope.
Hammer et al. [11] introduced another solution concept which was called selectope.

This solution concept was investigated by Derks et al. [5] in the case of cooperative
games. We extend it for games de�ned on an atomic family of feasible coalitions L.
First of all, we de�ne the dividends for the game v ∈ �(L); recursively, by

4v(S) =

{
0 if S = ∅;
v(S)−

∑
{T∈L:T ⊂ S} 4v(T ) otherwise

for every coalition S ∈ L, where ⊂ denotes strict inclusion. Obviously, for every
v ∈ �(L) and S ∈ L,

v(S) =
∑

{T∈L:T ⊆ S}
4v(T )

and hence every v∈�(L) can be uniquely represented by
v=

∑
{T∈L:T 6=∅}

4v(T )�T ;

where �T ∈�(L) is the unanimity game for the nonempty coalition T ∈L:
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Table 1

� {1; 2} {1; 2; 3} m�1(v) m�2(v) m�3(v)

1 1 1 3 0 0
2 1 2 2 1 0
3 1 3 2 0 1
4 2 1 1 2 0
5 2 2 0 3 0
6 2 3 0 2 1

De�nition 1. Let L⊆ 2N be an atomic family such that ∅; N ∈L. A selector on L

is a function � :L\{∅} → N with �(S)∈ S for every nonempty coalition S ∈L.

We denote by A(L) the set of all selectors on L: Note that the number of selectors
on L is

∏
T∈L;T 6=∅ |T |:

De�nition 2. Let �∈A(L) be a selector. The selection corresponding to � is the
vector m�(v) ∈ Rn de�ned by

m�i (v) =
∑

{S∈L:�(S)=i}
4v(S)

for every i∈N and v∈�(L): The selectope for a game v∈�(L) is given by
Sel(L; v) = conv{m�(v): �∈A(L)}:

Obviously, for every v ∈ �(L); and � ∈ A(L); we have m�(v) ∈ I∗(L; v) and
hence, by convexity of I∗(L; v),

Sel(L; v)⊆ I∗(L; v):

Example. Let N = {1; 2; 3} and consider the family
L= {∅; {1}; {2}; {3}; {1; 2}; {1; 2; 3}}:

We de�ne v ∈ �(L) by v(1)=v(2)=v(3)=0; v(12)=2; and v(123)=3: There are six
selectors on L which are listed in Table 1 along with the corresponding selections.

The unitary coalitions are not in this table because all selectors satisfy �({i})= i for
all {i} ∈ L. For this game v, we have

Sel(L; v) = conv{(3; 0; 0); (2; 1; 0); (2; 0; 1); (1; 2; 0); (0; 3; 0); (0; 2; 1)}:
Note that Core(L; v) = Sel(L; v) as we illustrate in Fig. 1.

Example. Let N = {1; 2; 3; 4} and consider the family
L= {∅; {1}; {2}; {3}; {4}; {1; 2}; {2; 3}; {1; 2; 3; 4}}
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Fig. 1.

Table 2

� {1; 2} {2; 3} {1; 2; 3; 4} m�1(v) m�2(v) m�3(v) m�4(v)

1 1 2 1 1 3 −1 −1
2 1 2 2 3 1 −1 −1
3 1 2 3 3 3 −3 −1
4 1 2 4 3 3 −1 −3
5 1 3 1 1 −1 3 −1
6 1 3 2 3 −3 3 −1
7 1 3 3 3 −1 1 −1
8 1 3 4 3 −1 3 −3
9 2 2 1 −3 7 −1 −1
10 2 2 2 −1 5 −1 −1
11 2 2 3 −1 7 −3 −1
12 2 2 4 −1 7 −1 −3
13 2 3 1 −3 3 3 −1
14 2 3 2 −1 1 3 −1
15 2 3 3 −1 3 1 −1
16 2 3 4 −1 3 3 −3

and the game v ∈ �(L) de�ned, for every S ∈ L\{∅}; by

v(S) =

{
−1 if |S|= 1;
2 otherwise:

If we calculate the dividends of the game, we get

4v(S) =




−1 if |S|= 1;
4 if |S|= 2;
−2 if S = N

and we show the selections in following Table 2.
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On the other hand, Core(L; v) is the set of vectors x ∈ R4 such that
x1 + x2 + x3 + x4 = 2;

x1 + x2¿2;

x2 + x3¿2;

x1; x2; x3; x4¿− 1:
Note that we have that Sel(L; v)* Core(L; v) and Core(L; v)* Sel(L; v): Speci�-
cally, (3; 3;−3;−1)∈Sel(L; v)\Core(L; v) since x3�−1 and (0; 2; 0; 0)∈Core(L; v)\
Sel(L; v) as it cannot be written as convex combination of m�(v) with �∈A(L), be-
cause x4¡ 0 for all x ∈ Sel(L; v) (see Table 2).
The inclusion Sel(L; v)⊆Core(L; v) characterizes (see below) the almost positive

games. A game v ∈ �(L) is called almost positive if the dividends of all non-unitary
coalitions are nonnegative, that is

4v(S)¿0 for all S ∈ L with |S|¿2:

Theorem 1. Let L⊆ 2N be an atomic family with ∅; N ∈L and let v∈�(L): The
following statements are equivalent:
(a) Sel(L; v)⊆Core(L; v):
(b) Sel(L; v)⊆ I(L; v):
(c) The game v is almost positive.

Proof. The implication (a)⇒ (b) is obvious, as by de�nition Core(L; v)⊆ I(L; v).
For (b) ⇒ (c), assume that there exists S ∈ L with |S|¿2 and 4v(S)¡ 0 and

consider a selector � ∈ A(L) such that �(S) = i and �(T ) 6= i for all T ∈ L;
T 6= S; {i}. Then m�i (v) = v({i}) +4v(S)¡v({i}), contradicting (b).
For (c)⇒ (a), let v be an almost positive game. We assert that m�(v) ∈ Core(L; v)

for every selector �. Indeed, for every nonempty coalition S ∈ L, we have∑
i∈S
m�i (v) =

∑
i∈S

∑
{T∈L:�(T )=i}

4v(T )

¿
∑

{T∈L:T ⊆ S}
4v(T )

= v(S);

where the inequality follows because all dividends of the non-unitary coalitions are
nonnegative.

Although Core(L; v)⊆Sel(L; v) has already been proved by Hammer et al. [11]
in the case L = 2N , this result is not true when the family of the feasible coalitions
L 6= 2N as the above example shows. Even, Sel(L; v)⊂Core(L; v) is possible. For
instance, consider L⊂ 2N with N = {1; 2; 3; 4} and ∅; N; {1; 2}; {2; 3}; {i} ∈ L for all
i ∈ N , and the almost positive game v with v({1; 2}) = v({2; 3}) = 1, v(N ) = 4, and
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v(S) = 0 otherwise. Then it is easily checked that (0; 1; 0; 3) ∈ Core(L; v), whereas
player 4 obtains at most 4v(N ) = 2 in the selectope.
The inclusion Core(L; v)⊆Sel(L; v) is true if we consider the family L with some

additional conditions, as established in the next section.

3. Games on closure spaces

We now introduce a certain class of families of feasible coalitions. A family L of
subsets of N with the properties

(1) ∅ ∈ L and N ∈ L,
(2) A ∈ L and B ∈ L implies that A ∩ B ∈ L,

is called a closure space on N . The elements of a closure space are called closed sets.
When L is a closure space on N ordered by inclusion, it is a complete lattice.
Two special cases of closure spaces are intersecting families and convex geometries.

Convex geometries will be de�ned in the next section.
The closure space L is called an intersecting family when

If S; T ∈ L with S ∩ T 6= ∅; then S ∪ T ∈ L:

Note that all the closure spaces on N = {1; 2; 3} are intersecting families.
In order to prove the next theorem, it is necessary to �rst de�ne some concepts.

Let L⊆ 2N be an atomic intersecting family and let S ⊆N . We consider the set of all
closed sets of L contained in S; i.e.,

LS = {T ∈ L: T ⊆ S}:

Obviously, LS 6= ∅ since ∅, {i} ∈ LS for all i ∈ S. Moreover, LS is an atomic
intersecting family on S if, and only if, S ∈ L.
If we consider LS ordered by inclusion, then (LS ;⊆) is a �nite partially ordered

set where the �rst element is ∅. Let �L(S) be the set of all maximal elements of
(LS ;⊆). Every one of these elements is called a maximal closed set of S. Under these
conditions we have the following property.

Proposition 2. For every S ⊆N; the coalitions of �L(S) form a partition of S.

Proof. Note that if S ∈ L, then �L(S)={S} and therefore, the proposition is trivially
true. If S 6∈ L and we write �L(S) = {S1; : : : ; Sk}; then k¿2 and

⋃k
i=1 Si⊆ S. Also,

S ⊆⋃k
i=1 Si because L is an atomic family.

In order to prove that the coalitions in �L(S) form a partition of S; we claim that
Si ∩ Sj = ∅ for all 16i; j6k; i 6= j. Indeed, if Si ∩ Sj 6= ∅; then Si ∪ Sj ∈L since
L is an intersecting family and also Si ∪ Sj ⊆ S; and hence Si ∪ Sj ∈LS but this is a
contradiction because Si and Sj are maximal closed sets of S.
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Theorem 3. Let L⊆ 2N be an atomic intersecting family and let v∈�(L). Then
Core(L; v)⊆Sel(L; v).

Proof. Assume that there exists x∈Core(L; v) such that x =∈ Sel(L; v). By convexity
and closedness of Sel(L; v) and applying a separation theorem, there exists y∈Rn
such that z · y¿x · y for every z ∈Sel(L; v). In particular, this holds for every m�(v)
with � ∈ A(L). If the components of vector y are ordered in nonincreasing order

yi1¿yi2¿ · · ·¿yin−1¿yin ;

then we have

x · y =
n∑
j=1

xijyij = yin

n∑
j=1

xij +
n−1∑
k=1

(yik − yik+1)
k∑
j=1

xij

¿ yinv(N ) +
n−1∑
k=1

(yik − yik+1)
∑

S∈�L({i1 ; i2 ;:::; ik})
v(S)

= yi1v({i1}) +
n∑
j=2

yij


 ∑
S∈�L({i1 ;:::; ij})

v(S)−
∑

S∈�L({i1 ;:::; ij−1})
v(S)




= yi1 4v ({i1}) +
n∑
j=2

yij


 ∑
S∈�L({i1 ;:::; ij})

∑
{T∈L:T ⊆ S}

4v(T )

−
∑

S∈�L({i1 ;:::; ij−1})

∑
{T∈L:T ⊆ S}

4v(T )




= yi1 4v ({i1}) +
n∑
j=2

yij


 ∑

{T∈L:T ⊆{i1 ;:::; ij}}
4v(T )

−
∑

{T∈L:T ⊆{i1 ;:::; ij−1}}
4v(T )




=
n∑
j=1

yij


 ∑

{T∈L:T ⊆{i1 ; i2 ;:::; ij}; ij∈T}
4v(T )


 ;

where the inequality follows because x ∈ Core(L; v), the yij are nonincreasing, and by
Proposition 2, and the before last equality also follows by Proposition 2. Obviously, it
is su�cient to take the selector � ∈ A(L) such that

m�ij (v) =
∑

{T∈L:T ⊆{i1 ; i2 ;:::; ij}; ij∈T}
4v(T )
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for all 16j6n in order to have a contradiction. This selector � ∈ A(L) is de�ned
by

�(S) = ik for all S ∈ L;

where k =max{p: ip ∈ S}.

It should be noted that the proof of Theorem 3 is closely related to the proof in
[4] of the inclusion of the core in the Weber set for games on 2N . See also Section 4
below.
There is also a converse to Theorem 3.

Theorem 4. Let L⊆ 2N be an atomic closure space such that Core(L; v)⊆Sel(L; v)
for all v ∈ �(L). Then L is an intersecting family.

Proof. Suppose L is not an intersecting family. Then there are S; T ∈L with S∩T 6= ∅
but S ∪ T 6∈ L. Let the number of players in N\(S ∪ T ) be equal to k ¿ 0. De�ne v
by v(M) = 1 if S ⊆M or T ⊆M but S ∪ T * M , v(M) = 2 if S ∪ T ⊆M but M 6= N ,
v(N ) = k +1, and v(M) = 0 otherwise. Then the dividends of S and T are equal to 1,
the dividend of N is equal to k−1, and all other dividends are equal to 0. Fix a player
i ∈ S∩T . Then it is easily seen that the vector x with xi=1, xj=1 for all j∈N\(S∪T ),
and xj =0 otherwise, is a core element. In this core element the players outside S ∪ T
receive k together. In the selectope, however, they receive at most the dividend k − 1
of N together. Hence, the core is not contained in the selectope. (Observe that in this
example it is indeed essential that S ∪ T 6∈ L, because otherwise x as above would
not be a core element.)

As has already been indicated, the game v ∈ �(L) can be written as a linear com-
bination of unanimity games, where the coe�cients are the dividends of the coalitions
in L. So, if we consider

v+ =
∑

{S∈L:4v(S)¿0}
4v(S)�S and v− =

∑
{S∈L:4v(S)¡0}

−4v (S)�S ;

then we have the decomposition v= v+ − v−.

Theorem 5. Let L⊆ 2N be an atomic intersecting family and v ∈ �(L). Then
(a) Sel(L; v+) = Core(L; v+) and Sel(L; v−) = Core(L; v−).
(b) Sel(L; v)=Core(L; v+)−Core(L; v−)={x ∈ Rn: x=y−z with y ∈ Core(L; v+)

and z ∈ Core(L; v−)}.

Proof. (a) This is a direct consequence of Theorems 1 and 3.
(b) For every � ∈ A(L), we have m�(v) = m�(v+) − m�(v−); and by part (a),

m�(v) ∈ Core(L; v+)− Core(L; v−). Therefore,
Sel(L; v)⊆Core(L; v+)− Core(L; v−):
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In order to prove the converse inclusion it is, in view of part (a), su�cient to prove
that for any two selectors �; � ∈ A(L), we have m�(v+) − m�(v−) ∈ Sel(L; v). We
de�ne  ∈ A(L) by

(S) =
{
�(S) if 4v (S)¿0;
�(S) if 4v (S)¡ 0

for every nonempty S ∈ L, and thus m(v) = m�(v+) − m�(v−). Therefore,
m�(v+)− m�(v−) ∈ Sel(L; v).

Note that if family L is an atomic family such that ∅, N ∈ L; but not necessarily
an intersecting family, then the assertions in this theorem hold only with ⊆ instead
of =.

4. Games on convex geometries

In this section, we de�ne the concept of convex geometry (see [6]) and we describe
some of their fundamental properties. We introduce the Weber set for games on convex
geometries and investigate its relation with the selectope. A closure space L is a
convex geometry on N if it satis�es the one-player extension property, i.e., If A 6= N
is a closed set, then A ∪ {i} is closed for some i∈N\A.
An element in a convex geometry L is called convex set. For A⊆N; an element

a ∈ A is an extreme point of A if a 6∈ A\a. (Here, �B is the smallest element of L
containing B⊆N . This is well de�ned because L is closed under taking intersections.)
For a closed set A ∈ L this is equivalent to A\a ∈ L. Moreover, for A; B ∈ L with
B⊆A, any extreme point of A belonging to B is also an extreme point of B. Let ex(A)
be the set of all extreme points of A. The convex geometries are the abstract closure
spaces satisfying the �nite Minkowski–Krein–Milman property: Every closed set is the
closure of its extreme points [6]. The following result shows that convex geometries
have some properties of Euclidean convexity.

Theorem 6. Let −:2N → 2N be a closure operator on N and let L be the family of
its closed sets. Then the following statements are equivalent:
(a) L is a convex geometry.
(b) a; b =∈ �A and b∈A ∪ a imply x =∈ A ∪ b; for every A⊆N and all a; b∈N with

a 6= b.
(c) For every closed set C ⊆N; C = ex(C).

Proof. See [6, Theorem 2:1].

We give some examples which exhibit how convex geometries have already arisen
in other papers on games with partial cooperation.
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Fig. 2. A convex geometry Co({1; 2; 3; 4; 5}).

Example. A subset S of a poset (partially ordered set) (P;6) is convex whenever
a∈ S; b∈ S and a6b imply [a; b]⊆ S. The convex subsets of any poset P form a
closure system Co(P). If P (or, equivalently Co(P)) is �nite, then each element is
between a maximal and a minimal one. If C ∈Co(P) then ex(C) is the union of
the maximal and minimal elements of C. Moreover, Co(P) is a convex geometry
[2, Theorem 3]. Edelman [7] studies voting games such that the feasible coalitions
are the convex sets in Co(P), where (P;6) is the chain de�ned by the policy order
(see Fig. 2).

Example. A graph G = (N; E) is connected if any two vertices can be joined by a
path. A maximal connected subgraph of G is a component of G. A cutvertex is one
whose removal increases the number of components, and a bridge is an edge with the
same property. A graph is 2-connected if it is connected, has at least 3 vertices and
contains no cutvertex. A subgraph B of a graph G is a block of G if either B is a
bridge or else it is a maximal 2-connected subgraph of G. A graph G is a block graph
if every block is a complete graph. The block graphs are called cycle-complete graphs
in [13].
A communication situation is a triple (N;G; v), where (N; v) is a game and

G = (N; E) is a graph. This concept was �rst introduced in [12], and investigated
in [3]. If G = (N; E) is a connected block-graph, then the family of all coalitions
of N that induce connected subgraph

L= {S ⊆N : (S; E(S)) is connected};
is a convex geometry [6, Theorem 3:7].

Example. Let (P;6) be a poset (with, as usual in this paper, P �nite). For any X ⊆P;
X 7→ �X :={y∈P: y6x for some x∈X };
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de�nes a closure operator on P. Its closed sets are the order ideals (down sets) of P,
and we denote this lattice by J (P). Since the union and intersection of order ideals
is again an order ideal, it follows that J (P) is a sublattice of 2P . Then J (P) is a
distributive lattice and so, J (P) is a convex geometry closed under set-union and
ex(S) is the set of all maximal points Max(S) of the subposet S ∈ J (P). There is a
1-1 correspondence between antichains of P and order ideals. The games (C; v) and
(A; c) of Faigle and Kern [9,10], where C is the family of down sets of P and A is
the set of antichains of P, are games on distributive lattices.

Edelman and Jamison de�ned a compatible ordering of a convex geometry L⊆ 2N
as a total ordering of the elements of N , i1¡i2¡ · · ·¡in such that

{i1; i2; : : : ; ik}∈L for all 16k6n:

A compatible ordering of L corresponds to a maximal chain of L. Here, a maximal
chain C of L is an ordered collection of convex sets

C : (∅=) C0⊂C1⊂ · · ·⊂Cn−1⊂Cn (=N ):
We denote by C(L) the set of all maximal chains of L. Note that if L = 2N ; then
there are n! maximal chains.
Thus, in every maximal chain of L, there is a minimal convex set that contains a

player i. Moreover, i is extreme in this convex set. Thus, for every i∈N and C ∈C(L);
we denote by C(i) the minimal convex set in chain C which contains player i; i.e.,

C(i) = {j∈N : j6i in the chain C}:
In other words, C(i) is the set of the predecessors of player i with respect to chain C
together with player i. It is clear that i∈ ex(C(i)) since C(i)\i∈L.
Let L be a convex geometry on N , C ∈C(L) and v∈�(L). The marginal worth

vector with respect to chain C in game v is the vector aC(v)∈RN given by
aCi (v) = v(C(i))− v(C(i)\i) for all i∈N

and the Weber set is de�ned by

Weber(L; v) = conv{aC(v): C ∈C(L)}:
For an atomic convex geometry L on N we will investigate the relation between
the Weber set and the selectope. The following result establishes connections between
selections corresponding to selectors on L and the marginal worth vectors associated
with the maximal chains of L.

Proposition 7. Let C ∈C(L) be a maximal chain and let � :L\{∅} → N be de�ned
for every nonempty coalition S ∈L; by

�(S) = j where j∈ S and S ⊆C(j):
Then � is a selector and m�(v) = aC(v) for every v∈�(L).
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Proof. First of all, we prove that � is well de�ned. For every nonempty coalition
S ∈L; it is clear that there exists a unique j∈ S such that S ⊆C(j). Here, j is the
last element of S that is incorporated in the maximal chain C; i.e., this element j∈ S
is such that C(k)⊆C(j) for all k ∈ S. Moreover, j∈ ex(S) since

C(j)\j∈L

S ∈L

}
⇒ (C(j)\j) ∩ S = S\j∈L:

Therefore, � is well de�ned. Now, for every i∈N and v∈�(L), we have
aCi (v) = v(C(i))− v(C(i)\i)

=
∑

{T∈L:T ⊆C(i)}
4v(T )−

∑
{T∈L:T ⊆C(i)\i}

4v(T )

=
∑

{T∈L:T ⊆C(i); i∈T}
4v(T )

=
∑

{T∈L:�(T )=i}
4v(T )

=m�i (v):

As the selectope for game v∈�(L) is a convex set, one consequence of this Propo-
sition is that Weber(L; v)⊆Sel(L; v).
In order to prove a converse of Proposition 7, we have to impose a condition on

the selector.

De�nition 3. A selector �∈A(L) is called consistent if it satis�es the following
conditions:

1. �(S)∈ ex(S) for all S ∈L\{∅}.
2. For all S; T ∈L, if S ⊂T and �(T )∈ S, then �(S) = �(T ).

Note that if we take a maximal chain C ∈C(L) and we de�ne the selector � as in
the above proposition, then � is consistent. Moreover, di�erent chains correspond to
di�erent selectors.

Theorem 8. Let L be an atomic convex geometry and let �∈A(L). Then � is
consistent if and only if there exists a maximal chain C ∈C(L) such that m�(v) =
aC(v) for every v∈�(L). In this case; the maximal chain

C : ∅⊂{i1}⊂{i1; i2}⊂ · · · ⊂{i1; : : : ; in−1}⊂{i1; : : : ; in}= N
is unique and it is recursively de�ned by

in = �(N );
ik = �(N\{in; in−1; : : : ; ik+1}) for all 16k ¡n:
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Proof. First of all, note that for every unanimity game �S ∈�(L), we have
4�S (S) = 1 and 4�S (R) = 0 for R∈L; R 6= S;

because {�T : T ∈L; T 6= ∅} is a basis of �(L) and, for every v∈�(L), we have
v=

∑
{T∈L:T 6=∅}

4v(T )�T :

(⇐) Let �∈A(L) be a selector such that there exists a maximal chain C ∈C(L)
satisfying m�(v) = aC(v) for all v∈�(L). We assert that � is consistent. In order to
prove the �rst condition of consistency, we consider the unanimity game �T ∈�(L).
If �(T ) = i, we have

m�i (�T ) =
∑

{R∈L:�(R)=i}
4�T (R) = 1

and by hypothesis, m�i (�T ) = a
C
i (�T ). Therefore

�T (C(i))− �T (C(i)\i) = 1:
Hence, T ⊆C(i) but T * C(i)\i, i.e., i is the last element of T in the order of C. So
�(T )∈T and T ⊆C(�(T )), and thus �(T )∈ ex(T ) because �(T )∈ ex(C(�(T ))).
Now, we prove the second condition of consistency. Let S ⊂T and �(T ) = i with

i∈ S. Since i∈ ex(T ) and S ⊂T we have i∈ ex(S). Then S ⊂C(i) since T ⊆C(i) and
we have

aCi (�S) = �S(C(i))− �S(C(i)\i) = 1
and thus

m�i (�S) =
∑

{R∈L:�(R)=i}
4�S (R) = 1:

Hence, i = �(S) and so, � is consistent.
(⇒) Let �∈A(L) be a consistent selector. First, we prove that there exists a max-

imal chain C ∈C(L) which satis�es aC(v) = m�(v) for every v∈�(L). We consider
the following maximal chain:

C : ∅⊂{i1}⊂{i1; i2}⊂ · · · ⊂{i1; : : : ; in−1}⊂{i1; : : : ; in}= N
or equivalently

C : ∅⊂C(i1)⊂C(i2)⊂ · · ·⊂C(in−1)⊂C(in) = N;
where

in = �(N );
ik = �(N\{in; in−1; : : : ik+1}) for all 16k ¡n:

Note that N; N\{in}; : : : ; N\{in; in−1; : : : ik+1}∈L because � is consistent. Moreover,
the selector � coincides with the selector de�ned in Proposition 7 for this chain, i.e.,
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if �∈A(L) is such that for all S ∈L; S 6= ∅,
�(S) = j where j∈ S and S ⊆C(j);

then �= �. Indeed, it is clear that �(S) = �(S) for every nonempty coalition S ∈C; if
S =∈ C then �(S) = i∈ ex(S) and S ⊂C(i) where C(i) is the least convex set in the
chain that contains i. Since S ⊂C(i) and �(C(i)) = i∈ ex(S), the consistency of the
selector � implies that �(S)= i. Thus �(S)=�(S) for every nonempty coalition S ∈L.
Applying Proposition 7 for the selector �, we obtain aC(v) = m�(v) for every

v∈�(L).
In order to prove that chain C is the unique chain such that aC(v) = m�(v) for all

v∈�(L), we consider the unanimity game �N ∈�(L). For every j∈N; we have

m�j (�N ) =
∑

{R∈L:�(R)=j}
4�N (R) =

{
1 if �(N ) = j;

0 otherwise:

On the other hand,

aCj (�N ) = �N (C(j))− �N (C(j)\j) =
{
1 if C(j) = N;

0 otherwise;

so, as �(N ) = in, the vectors coincide if and only if C(in) = N .
Next, consider �N\{in} ∈�(L). For every j∈N; we have

m�j (�N\{in}) =
∑

{R∈L:�(R)=j}
4�N\{in}(R) =

{
1 if �(N\{in}) = j;
0 otherwise

and

aCj (�N\{in}) = �N\{in}(C(j))− �N\{in}(C(j)\j)

=

{
1 if C(j)⊇N\{in} and C(j)\j + N\{in};
0 otherwise:

Note that if C(j)⊇N\{in} and C(j)\j + N\{in}; then C(j) is a convex set with n
or n − 1 elements, but in every maximal chain there is only one convex set with k
elements, for all 16k6n; and the convex set of n elements is excluded. Therefore,

aCj (�N\{in}) =

{
1 if C(j) = N\{in};
0 otherwise:

Thus, since �(N\{in})=in−1, we have aC(�N\{in})=m�(�N\{in}) if and only if C(in−1)=
N\{in}. By repeating this argument, the maximal chain C is obtained.

Example. Let N = {1; 2; 3} and consider the convex geometry
L= {∅; {1}; {2}; {3}; {1; 2}; {2; 3}; {1; 2; 3}}
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Table 3

� {1; 2} {2; 3} {1; 2; 3} m�1(v) m�2(v) m�3(v)

1 1 2 3 2 2 −1
2 2 2 3 0 4 −1
3 1 3 3 2 0 1
4 2 3 3 0 2 1
5 1 2 1 1 2 0
6 2 2 1 −1 4 0
7 1 3 1 1 0 2
8 2 3 1 −1 2 2
9 1 2 2 2 1 0
10 2 2 2 0 3 0
11 1 3 2 2 −1 2
12 2 3 2 0 1 2

Fig. 3.

and the game v∈�(L) given by v(1)=v(2)=v(3)=0; v(12)=v(23)=2; and v(123)=3.
There are 12 selectors and are given in Table 3.
Note that in this example, selectors 3–5, and 7 are consistent and the selections

corresponding to these selectors coincide with the marginal worth vectors with respect
to the four maximal chains in L. In Fig. 3, we show the position of the Weber set,
the selectope and the core of the game v in the above example.
In this example, note that the Weber set is strictly contained in the selectope; in

general, Weber(L; v) 6= Sel(L; v). Also, Core(L; v)⊆Sel(L; v).
It is worth noting that the inclusion of Core(L; v)⊆Weber(L; v) (see [15,4]) is

not true if (the convex geometry) L 6= 2N , as the above example shows (see also
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[1]). In view of this fact, the proof of Core(L; v)⊆Sel(L; v) cannot be supported by
Weber(L; v)⊆Sel(L; v).
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