36 research outputs found
Visualization of translation termination intermediates trapped by the Apidaecin 137 peptide during RF3-mediated recycling of RF1.
During translation termination in bacteria, the release factors RF1 and RF2 are recycled from the ribosome by RF3. While high-resolution structures of the individual termination factors on the ribosome exist, direct structural insight into how RF3 mediates dissociation of the decoding RFs has been lacking. Here we have used the Apidaecin 137 peptide to trap RF1 together with RF3 on the ribosome and visualize an ensemble of termination intermediates using cryo-electron microscopy. Binding of RF3 to the ribosome induces small subunit (SSU) rotation and swivelling of the head, yielding intermediate states with shifted P-site tRNAs and RF1 conformations. RF3 does not directly eject RF1 from the ribosome, but rather induces full rotation of the SSU that indirectly dislodges RF1 from its binding site. SSU rotation is coupled to the accommodation of the GTPase domain of RF3 on the large subunit (LSU), thereby promoting GTP hydrolysis and dissociation of RF3 from the ribosome
Enhancing axial localization with wavefront control
Enhancing the ability to resolve axial details is crucial in
three-dimensional optical imaging. We provide experimental evidence showcasing
the ultimate precision achievable in axial localization using vortex beams. For
Laguerre-Gauss (LG) beams, this remarkable limit can be attained with just a
single intensity scan. This proof-of-principle demonstrates that microscopy
techniques based on LG vortex beams can potentially benefit from the introduced
quantum-inspired superresolution protocol.Comment: 10 pages, 6 figures. Comments welcom
Towards quantum 3d imaging devices
We review the advancement of the research toward the design and implementation of quantum plenoptic cameras, radically novel 3D imaging devices that exploit both momentum–position entanglement and photon–number correlations to provide the typical refocusing and ultra-fast, scanning-free, 3D imaging capability of plenoptic devices, along with dramatically enhanced performances, unattainable in standard plenoptic cameras: diffraction-limited resolution, large depth of focus, and ultra-low noise. To further increase the volumetric resolution beyond the Rayleigh diffraction limit, and achieve the quantum limit, we are also developing dedicated protocols based on quantum Fisher information. However, for the quantum advantages of the proposed devices to be effective and appealing to end-users, two main challenges need to be tackled. First, due to the large number of frames required for correlation measurements to provide an acceptable signal-to-noise ratio, quantum plenoptic imaging (QPI) would require, if implemented with commercially available high-resolution cameras, acquisition times ranging from tens of seconds to a few minutes. Second, the elaboration of this large amount of data, in order to retrieve 3D images or refocusing 2D images, requires high-performance and time-consuming computation. To address these challenges, we are developing high-resolution single-photon avalanche photodiode (SPAD) arrays and high-performance low-level programming of ultra-fast electronics, combined with compressive sensing and quantum tomography algorithms, with the aim to reduce both the acquisition and the elaboration time by two orders of magnitude. Routes toward exploitation of the QPI devices will also be discussed
Nanoscale Porosity of High Surface Area Gadolinium Oxide Nanofoam Obtained With Combustion Synthesis
Nanoscale gadolinium oxide (Gd2O3) is a promising nanomaterial with unique physicochemical properties that finds various applications ranging from biomedicine to catalysis. The preparation of highly porous Gd2O3 nanofoam greatly increases its surface area thereby boosting its potential for functional use in applications such as water purification processes and in catalytic applications. By using the combustion synthesis method, a strong exothermic redox reaction between gadolinium nitrate hexahydrate and glycine causes the formation of crystalline nanoporous Gd2O3. In this study, the synthesis of Gd2O3 nanofoam is achieved with combustion synthesis at large scale (grams). Its nanoscale porosity is investigated by nitrogen physisorption and its nanoscale 3D structure by electron tomography, and the formation process is investigated as well by means of in situ heating inside the transmission electron microscope. The bulk nanofoam product is highly crystalline and porous with a surface area of 67 m2 g−1 as measured by physisorption, in good agreement with the electron tomographic 3D reconstructions showing an intricate interconnected pore network with pore sizes varying from 2 to 3 nm to tens of nanometers. In situ heating experiments point to many possibilities for tuning the porosity of the Gd2O3 nanofoam by varying the experimental synthesis conditions
Multiple assembly strategies for silica aerogel-fiber combinations – a review
Silica aerogels have a unique structure that makes them promising materials for variable applications. However, they are brittle due to weak inter-particle necks, and also expensive. Combining aerogel with fibers can not only enhance the mechanical/insulation properties, but also reduce dust release, and ease practical application. The majority of review articles in this field have been on the aerogel/textile systems' application or on textile impregnation in silica sol utilizing the sol–gel technique, with a few papers also addressing the use of aerogel as filler. This review for the first time highlights all strategies to assemble silica aerogel with textile materials. For sol–gel approaches, the fibers can be impregnated in a silica precursor sol to form the aerogel in situ between the fibers, but the sol itself can also be spun into aerogel fibers. Other strategies employ pre-formed silica aerogel, mixed in polymer or solvent matrices/slurries, to form aerogel injected blankets, aerogel-filled material coated fibers, and aerogel-filled composite fibers. Aerogel particles-filled textile packages have also been proposed. The emerging activities on simulations of aerogel-fiber combinations are reviewed. The advantages/disadvantages of various approaches are evaluated, and the current market situation and an outlook for the future of the field are summarized
Effects of Anacetrapib in Patients with Atherosclerotic Vascular Disease
BACKGROUND:
Patients with atherosclerotic vascular disease remain at high risk for cardiovascular events despite effective statin-based treatment of low-density lipoprotein (LDL) cholesterol levels. The inhibition of cholesteryl ester transfer protein (CETP) by anacetrapib reduces LDL cholesterol levels and increases high-density lipoprotein (HDL) cholesterol levels. However, trials of other CETP inhibitors have shown neutral or adverse effects on cardiovascular outcomes.
METHODS:
We conducted a randomized, double-blind, placebo-controlled trial involving 30,449 adults with atherosclerotic vascular disease who were receiving intensive atorvastatin therapy and who had a mean LDL cholesterol level of 61 mg per deciliter (1.58 mmol per liter), a mean non-HDL cholesterol level of 92 mg per deciliter (2.38 mmol per liter), and a mean HDL cholesterol level of 40 mg per deciliter (1.03 mmol per liter). The patients were assigned to receive either 100 mg of anacetrapib once daily (15,225 patients) or matching placebo (15,224 patients). The primary outcome was the first major coronary event, a composite of coronary death, myocardial infarction, or coronary revascularization.
RESULTS:
During the median follow-up period of 4.1 years, the primary outcome occurred in significantly fewer patients in the anacetrapib group than in the placebo group (1640 of 15,225 patients [10.8%] vs. 1803 of 15,224 patients [11.8%]; rate ratio, 0.91; 95% confidence interval, 0.85 to 0.97; P=0.004). The relative difference in risk was similar across multiple prespecified subgroups. At the trial midpoint, the mean level of HDL cholesterol was higher by 43 mg per deciliter (1.12 mmol per liter) in the anacetrapib group than in the placebo group (a relative difference of 104%), and the mean level of non-HDL cholesterol was lower by 17 mg per deciliter (0.44 mmol per liter), a relative difference of -18%. There were no significant between-group differences in the risk of death, cancer, or other serious adverse events.
CONCLUSIONS:
Among patients with atherosclerotic vascular disease who were receiving intensive statin therapy, the use of anacetrapib resulted in a lower incidence of major coronary events than the use of placebo. (Funded by Merck and others; Current Controlled Trials number, ISRCTN48678192 ; ClinicalTrials.gov number, NCT01252953 ; and EudraCT number, 2010-023467-18 .)
Reconstruction of ECG precordial leads by PCA and neural networks
The paper describes possibilities of simplifying the measurement set-up for ECG recordings, by reducing the number of leads. The study proposes a technique to reduce the number of measurements or to reconstruct ECG leads by neural networks. The results are encouraging and show how it is possible to reconstruct ECG leads. The goal of this work is in the possibilities of reconstruction ECG precordial leads and the algorithm of reconstruction