200 research outputs found

    Patagonia’s diverse but homogeneous early paleocene forests: Angiosperm leaves from the Danian Salamanca and Peñas Coloradas formations, San Jorge Basin, Chubut, Argentina

    Get PDF
    Early Paleocene macrofloras from the Southern Hemisphere are little known, despite their significance for understanding plant evolution, biogeography, and global variation in recovery after the end-Cretaceous extinction. As a foundation for systematic and paleoecological work, we describe 51 angiosperm leaf morphotypes from three distinct, precisely dated early to late Danian time intervals, using collections from the Salamanca and Peñas Coloradas formations in the San Jorge Basin, Chubut Province, Patagonia, Argentina. These rich floras were previously analyzed but with minimal descriptions. The assemblages comprise the first stratigraphically controlled and quantitatively collected floras for the early Paleocene of the Southern Hemisphere. Botanical affinities of the angiosperm morphotypes are not formally assigned here, but we informally associate some of them with families including Arecaceae, Fabaceae, Cunoniaceae, Lauraceae, Nothofagaceae, Rhamnaceae, and Rosaceae; in addition, leaves of Menispermaceae and other Rhamnaceae were formally described in previous work. Other families potentially present in these assemblages include Akaniaceae, Anacardiaceae, Apiaceae, Araceae, Bixaceae, Juglandaceae, Malvaceae, Sapindaceae, and Urticaceae. Remarkably, there is little floral turnover or change in dominance through the Danian floral sequence spanned by the studied localities, even among estuarine vs. continental depositional environments. This finding indicates a homogeneous, generalist, long-lived floral association following the K-Pg extinction, similar in these respects to many North American Danian floras. However, the richness of the Danian Patagonian floras, from paleolatitudes >50 degrees South, along with other lines of evidence from the region, suggests differences in the response of terrestrial ecosystems in southern South America to the terminal Cretaceous event from those of the Northern Hemisphere. The flora appears to be largely paleo-endemic in nature and shows several compositional links to the Eocene floras of Patagonia, emphasizing the importance of diversification within Patagonia after the end-Cretaceous event as a factor leading to the hyperdiverse Eocene regional floras.Fil: Iglesias, Ari. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte. Instituto de Investigaciones en Biodiversidad y Medioambiente. Universidad Nacional del Comahue. Centro Regional Universidad Bariloche. Instituto de Investigaciones en Biodiversidad y Medioambiente; ArgentinaFil: Wilf, Peter. State University of Pennsylvania; Estados UnidosFil: Stiles, Elena. State University of Pennsylvania; Estados Unidos. University of Washington; Estados UnidosFil: Wilf, Rebecca. State University of Pennsylvania; Estados Unido

    Conifer wood assemblage dominated by Podocarpaceae, early Eocene of Laguna del Hunco, central Argentinean Patagonia

    Get PDF
    During the early Eocene, Patagonia had highly diverse floras that are primarily known from compression and pollen fossils. Fossil wood studies from this epoch are scarce in the region and largely absent from the Laguna del Hunco flora, which has a highly diverse and excellently preserved compression assemblage. A collection of 26 conifer woods from the Laguna del Hunco fossil-lake beds (early Eocene, ca. 52 Ma) from central-western Patagonia was studied, of which 12 could be identified to genus. The dominant species is Phyllocladoxylon antarcticum, which has affinity with early-diverging Podocarpaceae such as Phyllocladus and Prumnnopitys. A single specimen of Protophyllocladoxylon francisiae probably represents an extinct group of Podocarpaceae. In addition, two taxonomic units of cf. Cupressinoxylon with putative affinity to Podocarpaceae were found. Diverse Podocarpaceae taxa consistent with the affinities of these woods were previously reported from vegetative and reproductive macrofossils as well as pollen grains from the same source unit. Some of the woods have galleries filled with frass. Distinct growth ring boundaries indicate seasonality, inferred to represent seasonal light availability. Growth ring widths suggest that the woods came from mature trees, whereas the widths and types of some rings denote near-uniform temperature and water availability conditions.Fil: Pujana, Roberto Roman. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Oficina de CoordinaciĂłn Administrativa Parque Centenario. Museo Argentino de Ciencias Naturales "Bernardino Rivadavia"; ArgentinaFil: Wilf, Peter. State University of Pennsylvania; Estados UnidosFil: Gandolfo, MarĂ­a Alejandra. Cornell University; Estados Unido

    Unexpected larger distribution of paleogene stem-rollers (AVES, CORACII): New evidence from the Eocene of Patagonia, Argentina

    Get PDF
    Here we present the first record of a stem-Coracii outside the Holarctic region, found in the early Eocene of Patagonia at the Laguna del Hunco locality. Ueekenkcoracias tambussiae gen. et sp. nov. consists of an incomplete right hind limb that presents the following combination of characters, characteristic of Coracii: relatively short and stout tibiotarsus, poorly developed crista cnemialis cranialis, short and wide tarsometatarsus, with the tuberositas m. tibialis cranialis located medially on the shaft, and curved and stout ungual phalanges. Although the presence of a rounded and conspicuous foramen vasculare distale and the trochlea metatarsi II strongly deflected medially resemble Primobucconidae, a fossil group only found in the Eocene of Europe and North America, our phylogenetic analysis indicates the new taxon is the basalmost known Coracii. The unexpected presence of a stem-Coracii in the Eocene of South America indicates that this clade had a more widespread distribution than previously hypothesized, already extending into the Southern Hemisphere by the early Eocene. Ueekenkcoracias tambussiae represents new evidence of the increasing diversity of stem lineages of birds in the Eocene. The new material provides novel morphological data for understanding the evolutionary origin and radiation of rollers and important data for estimates of the divergence time of the group.Fil: Degrange, Federico Javier. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Centro CientĂ­fico TecnolĂłgico Conicet - CĂłrdoba. Centro de Investigaciones en Ciencias de la Tierra. Universidad Nacional de CĂłrdoba. Facultad de Ciencias Exactas FĂ­sicas y Naturales. Centro de Investigaciones en Ciencias de la Tierra; ArgentinaFil: Pol, Diego. Museo PaleontolĂłgico Egidio Feruglio; Argentina. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas; ArgentinaFil: Puerta, Pablo. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas; Argentina. Museo PaleontolĂłgico Egidio Feruglio; ArgentinaFil: Wilf, Peter. State University of Pennsylvania; Estados Unido

    Fossil flowers from the early Palaeocene of Patagonia, Argentina, with affinity to Schizomerieae (Cunoniaceae)

    Get PDF
    Background and Aims: Early Palaeocene (Danian) plant fossils from Patagonia provide information on the recovery from the end-Cretaceous extinction and Cenozoic floristic change in South America. Actinomorphic flowers with eight to ten perianth parts are described and evaluated in a phylogenetic framework. The goal of this study is to determine the identity of these fossil flowers and to discuss their evolutionary, palaeoecological and biogeographical significance. Methods: More than 100 fossilized flowers were collected from three localities in the Danian Salamanca and Peñas Coloradas Formations in southern Chubut. They were prepared, photographed and compared with similar extant and fossil flowers using published literature and herbarium specimens. Phylogenetic analysis was performed using morphological and molecular data. Key results: The fossil flowers share some but not all the synapomorphies that characterize the Schizomerieae, a tribe within Cunoniaceae. These features include the shallow floral cup, variable number of perianth parts arranged in two whorls, laciniate petals, anthers with a connective extension, and a superior ovary with free styles. The number of perianth parts is doubled and the in situ pollen is tricolporate, with a surface more like that of other Cunoniaceae outside Schizomerieae, such as Davidsonia or Weinmannia. Conclusions: An extinct genus of crown-group Cunoniaceae is recognized and placed along the stem lineage leading to Schizomerieae. Extant relatives are typical of tropical to southern-temperate rainforests, and these fossils likely indicate a similarly warm and wet temperate palaeoclimate. The oldest reliable occurrences of the family are fossil pollen and wood from the Upper Cretaceous of the Antarctica and Argentina, whereas in Australia the family first occurs in upper Palaeocene deposits. This discovery demonstrates that the family survived the Cretaceous-Palaeogene boundary event in Patagonia and that diversification of extant lineages in the family was under way by the earliest Cenozoic.Fil: Jud, Nathan A.. Cornell University; Estados UnidosFil: Gandolfo, Maria Alejandra. Cornell University; Estados UnidosFil: Iglesias, Ari. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte. Instituto de Investigaciones en Biodiversidad y Medioambiente. Universidad Nacional del Comahue. Centro Regional Universidad Bariloche. Instituto de Investigaciones en Biodiversidad y Medioambiente; ArgentinaFil: Wilf, Peter. State University of Pennsylvania; Estados Unido

    Fossil moonseeds from the Paleogene of West Gondwana (Patagonia, Argentina)

    Get PDF
    Premise of the Study: The fossil record is critical for testing biogeographic hypotheses. Menispermaceae (moonseeds) are a widespread family with a rich fossil record and alternative hypotheses related to their origin and diversification. The family is well-represented in Cenozoic deposits of the northern hemisphere, but the record in the southern hemisphere is sparse. Filling in the southern record of moonseeds will improve our ability to evaluate alternative biogeographic hypotheses. Methods: Fossils were collected from the Salamanca (early Paleocene, Danian) and the Huitrera (early Eocene, Ypresian) formations in Chubut Province, Argentina. We photographed them using light microscopy, epifluorescence, and scanning electron microscopy and compared the fossils with similar extant and fossil Menispermaceae using herbarium specimens and published literature. Key Results: We describe fossil leaves and endocarps attributed to Menispermaceae from Argentinean Patagonia. The leaves are identified to the family, and the endocarps are further identified to the tribe Cissampelideae. The Salamancan endocarp is assigned to the extant genus Stephania. These fossils significantly expand the known range of Menispermaceae in South America, and they include the oldest (ca. 64 Ma) unequivocal evidence of the family worldwide. Conclusions: Our findings highlight the importance of West Gondwana in the evolution of Menispermaceae during the Paleogene. Currently, the fossil record does not discern between a Laurasian or Gondwanan origin; however, it does demonstrate that Menispermaceae grew well outside the tropics by the early Paleocene. The endocarps’ affinity with Cissampelideae suggests that diversification of the family was well underway by the earliest Paleocene.Fil: Jud, Nathan A.. Cornell University; Estados UnidosFil: Iglesias, Ari. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Centro CientĂ­fico TecnolĂłgico Conicet - Patagonia Norte. Instituto de Investigaciones en Biodiversidad y Medioambiente. Universidad Nacional del Comahue. Centro Regional Universidad Bariloche. Instituto de Investigaciones en Biodiversidad y Medioambiente; ArgentinaFil: Wilf, Peter. State University of Pennsylvania; Estados UnidosFil: Gandolfo, Maria Alejandra. Cornell University; Estados Unido

    Cretaceous-Paleogene plant extinction and recovery in Patagonia

    Get PDF
    The Cretaceous-Paleogene (K/Pg) extinction appears to have been geographically heterogeneous for some organismal groups. Southern Hemisphere K/Pg palynological records have shown lower extinction and faster recovery than in the Northern Hemisphere, but no comparable, well-constrained Southern Hemisphere macrofloras spanning this interval had been available. Here, macrofloral turnover patterns are addressed for the first time in the Southern Hemisphere, using more than 3500 dicot leaves from the latest Cretaceous (Maastrichtian) and the earliest Paleocene (Danian) of Argentine Patagonia. A maximum ca. 90% macrofloral extinction and ca. 45% drop in rarefied species richness is estimated across the K/Pg, consistent with substantial species-level extinction and previously observed extirpation of host-specialized leaf mines. However, prior palynological and taxonomic studies indicate low turnover of higher taxa and persistence of general floral composition in the same sections. High species extinction, decreased species richness, and homogeneous Danian macrofloras across time and facies resemble patterns often observed in North America, but there are several notable differences. When compared with boundary-spanning macrofloras at similar absolute paleolatitudes (ca. 50°S or 50°N) from the Williston Basin (WB) in the Dakotas, both Maastrichtian and Danian Patagonian species richnesses are higher, extending a history of elevated South American diversity into the Maastrichtian. Despite high species turnover, our analyses also reveal continuity and expansion of leaf morphospace, including an increase in lobed and toothed species unlike the Danian WB. Thus, both Patagonian and WB K/Pg macrofloras support a significant extinction event, but they may also reflect geographically heterogeneous diversity, extinction, and recovery patterns warranting future study.Fil: Stiles, Elena. State University of Pennsylvania; Estados UnidosFil: Wilf, Peter. State University of Pennsylvania; Estados UnidosFil: Iglesias, Ari. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Centro CientĂ­fico TecnolĂłgico Conicet - Patagonia Norte. Instituto de Investigaciones en Biodiversidad y Medioambiente. Universidad Nacional del Comahue. Centro Regional Universidad Bariloche. Instituto de Investigaciones en Biodiversidad y Medioambiente; ArgentinaFil: Gandolfo, Maria Alejandra. Cornell University; Estados UnidosFil: CĂșneo, NĂ©stor RubĂ©n. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas; Argentina. Museo PaleontolĂłgico Egidio Feruglio; Argentin

    Habitat‐related error in estimating temperatures from leaf margins in a humid tropical forest

    Full text link
    Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/142103/1/ajb21096.pd

    The end-Cretaceous plant extinction: Heterogeneity, ecosystem transformation, and insights for the future

    Get PDF
    The Cretaceous–Paleogene (K–Pg) mass extinction was geologically instantaneous, causing the most drastic extinction rates in Earth’s History. The rapid species losses and environmental destruction from the Chicxulub impact at 66.02 Ma made the K–Pg the most comparable past event to today’s projected “sixth” mass extinction. The extinction famously eliminated major clades of animals and plankton. However, for land plants, losses primarily occurred among species observed in regional studies but left no global trace at the family or major-clade level, leading to questions about whether there was a significant K–Pg plant extinction. We review emerging paleobotanical data from the Americas and argue that the evidence strongly favors profound (generally >50%), geographically heterogeneous species losses and recovery consistent with mass extinction. The heterogeneity appears to reflect several factors, including distance from the impact site and marine and latitudinal buffering of the impact winter. The ensuing transformations have affected all land life, including true angiosperm dominance in the world’s forests, the birth of the hyperdiverse Neotropical rainforest biome, and evolutionary radiations leading to many crown angiosperm clades. Although the worst outcomes are still preventable, the sixth mass extinction could mirror the K–Pg event by eliminating comparable numbers of plant species in a geologic instant, impoverishing and eventually transforming terrestrial ecosystems while having little effect on global plant-family diversity

    Resolving Australian analogs for an Eocene Patagonian paleorainforest using leaf size and floristics

    Get PDF
    ‱ Premise of the study: The diverse early Eocene flora from Laguna del Hunco (LH) in Patagonia, Argentina has many nearest living relatives (NLRs) in Australasia but few in South America, indicating the differential survival of an ancient, trans‐Antarctic rainforest biome. To better understand this significant biogeographic pattern, we used detailed comparisons of leaf size and floristics to quantify the legacy of LH across a large network of Australian rainforest‐plot assemblages. ‱ Methods: We applied vein scaling, a new method for estimating the original areas of fragmented leaves. We then compared leaf size and floristics at LH with living Australian assemblages and tabulated the climates of those where NLRs occur, along with additional data on climatic ranges of “ex‐Australian” NLRs that survive outside of Australia. ‱ Key results: Vein scaling estimated areas as accurately as leaf‐size classes. Applying vein scaling to fossil fragments increased the grand mean area of LH by 450 mm2, recovering more originally large leaves. The paleoflora has a majority of microphyll leaves, comparable to leaf litter in subtropical Australian forests, which also have the greatest floristic similarity to LH. Tropical Australian assemblages also share many taxa with LH, and ex‐Australian NLRs mostly inhabit cool, wet montane habitats no longer present in Australia. ‱ Conclusions: Vein scaling is valuable for improving the resolution of fossil leaf‐size distributions by including fragmented specimens. The legacy of LH is evident not only in subtropical and tropical Australia but also in tropical montane Australasia and Southeast Asia, reflecting the disparate histories of surviving Gondwanan lineages.Fil: Merkhofer, Lisa. State University of Pennsylvania; Estados UnidosFil: Wilf, Peter. State University of Pennsylvania; Estados UnidosFil: Haas, M. Tyler. State University of Pennsylvania; Estados UnidosFil: Kooyman, Robert M.. Macquarie University; AustraliaFil: Sack, Lawren. University of California at Los Angeles; Estados UnidosFil: Scoffoni, Christine. University of California at Los Angeles; Estados UnidosFil: CĂșneo, NĂ©stor RubĂ©n. Museo PaleontolĂłgico Egidio Feruglio; Argentina. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas; Argentin
    • 

    corecore