84 research outputs found

    T cell expansion from umbilical cord blood without thymic stroma cells after stimulation with SCF, IL-7, AND IL-2

    Get PDF
    We analyzed in vitro expansion and differentiation of T progenitor cells from umbilical cord blood in the absence of thymic epithelium. The expansion setup is performed in the presence of SCF, IL-7 , and IL -2 with autologous serum .Using CBMCs as initial source , we compared the growth kinetics of several cell populations in either whole CBMC or  CD34+ -enriched-, as well as in CD3CD4CD8-depleted expansion assays by FACS analysis. After 11 days of culture, cell increase values were about 7 fold for CD3+, 6 fold for CD3+CD4+, 7 fold for CD3+CD8+, 4fold for CD3+CD56, 6fold for CD56+, and 0.2 fold for CD34+. We characterized the developmental state of these cell populations by RT –PCR analysis of the lymphoid differentiation markers RAG-1 and pre T-Alpha. In all samples , transcripts of both markers could be detected from day 0 though day 11, however , in case of pre – T-Alpha,  nested PCR  was always required , indicating lower expression . These findings; therefore, demonstrate that T-cell differentiation events (as opposed to mere expansion) do occur in stroma cell free expansion assays

    The BCR-ABL1 Kinase Bypasses Selection for the Expression of a Pre–B Cell Receptor in Pre–B Acute Lymphoblastic Leukemia Cells

    Get PDF
    The BCR-ABL1 kinase expressed in acute lymphoblastic leukemia (ALL) drives malignant transformation of human pre–B cells. Comparing genome-wide gene expression profiles of BCR-ABL1+ pre–B ALL and normal bone marrow pre–B cells by serial analysis of gene expression, many genes involved in pre–B cell receptor signaling are silenced in the leukemia cells. Although normal pre–B cells are selected for the expression of a functional pre–B cell receptor, BCR-ABL1+ ALL cells mostly do not harbor a productively rearranged IGH allele. In these cases, we identified traces of secondary VH gene rearrangements, which may have rendered an initially productive VH region gene nonfunctional. Even BCR-ABL1+ ALL cells harboring a functional VH region gene are unresponsive to pre–B cell receptor engagement and exhibit autonomous oscillatory Ca2+ signaling activity. Conversely, leukemia subclones surviving inhibition of BCR-ABL1 by STI571 restore responsiveness to antigen receptor engagement and differentiate into immature B cells expressing immunoglobulin light chains. BCR-ABL1 kinase activity is linked to defective pre–B cell receptor signaling and the expression of a truncated isoform of the pre–B cell receptor–associated linker molecule SLP65. Also in primary leukemia cells, truncated SLP65 is expressed before but not after treatment of the patients with STI571. We conclude that inhibition of BCR-ABL1 reconstitutes selection for leukemia cells expressing a functional (pre–) B cell receptor

    Role of DNA methylation in miR-200c/141 cluster silencing in invasive breast cancer cells

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The miR-200c/141 cluster has recently been implicated in the epithelial to mesenchymal transition (EMT) process. The expression of these two miRNAs is inversely correlated with tumorigenicity and invasiveness in several human cancers. The role of these miRNAs in cancer progression is based in part on their capacity to target the EMT activators ZEB1 and ZEB2, two transcription factors, which in turn repress expression of E-cadherin. Little is known about the regulation of the mir200c/141 cluster, whose targeting has been proposed as a promising new therapy for the most aggressive tumors.</p> <p>Findings</p> <p>We show that the miR-200c/141 cluster is repressed by DNA methylation of a CpG island located in the promoter region of these miRNAs. Whereas in vitro methylation of the miR-200c/141 promoter led to shutdown of promoter activity, treatment with a demethylating agent caused transcriptional reactivation in breast cancer cells formerly lacking expression of miR-200c and miR-141. More importantly, we observed that DNA methylation of the identified miR-200c/141 promoter was tightly correlated with phenotype and the invasive capacity in a panel of 8 human breast cancer cell lines. In line with this, in vitro induction of EMT by ectopic expression of the EMT transcription factor Twist in human immortalized mammary epithelial cells (HMLE) was accompanied by increased DNA methylation and concomitant repression of the miR-200c/141 locus.</p> <p>Conclusions</p> <p>The present study demonstrates that expression of the miR-200c/141 cluster is regulated by DNA methylation, suggesting epigenetic regulation of this miRNA locus in aggressive breast cancer cell lines as well as untransformed mammary epithelial cells. This epigenetic silencing mechanism might represent a novel component of the regulatory circuit for the maintenance of EMT programs in cancer and normal cells.</p

    Nucleolin as Activator of Human Papillomavirus Type 18 Oncogene Transcription in Cervical Cancer

    Get PDF
    High risk human papillomaviruses (HPVs) are central to the development of cervical cancer and the deregulated expression of high risk HPV oncogenes is a critical event in this process. Here, we find that the cell protein nucleolin binds in a sequence-specific manner to the HPV18 enhancer. The DNA binding activity of nucleolin is primarily S phase specific, much like the transcription of the E6 and E7 oncoproteins of HPV18 in cervical cancer cells. Antisense inactivation of nucleolin blocks E6 and E7 oncogene transcription and selectively decreases HPV18+ cervical cancer cell growth. Furthermore, nucleolin controls the chromatin structure of the HPV18 enhancer. In contrast, HPV16 oncogene transcription and proliferation rates of HPV16+ SiHa cervical cancer cells are independent of nucleolin activity. Moreover, nucleolin expression is altered in HPV18+ precancerous and cancerous tissue from the cervix uteri. Whereas nucleolin was homogeneously distributed in the nuclei of normal epithelial cells, it showed a speckled nuclear phenotype in HPV18+ carcinomas. Thus, the host cell protein nucleolin is directly linked to HPV18-induced cervical carcinogenesis

    Unrestricted somatic stem cells (USSC) from human umbilical cord blood display uncommitted epigenetic signatures of the major stem cell pluripotency genes

    Get PDF
    AbstractUnrestricted somatic stem cells (USSC) from human cord blood display a broad differentiation potential for ectodermal, mesodermal, and endodermal cell types. The molecular basis for these stem cell properties is unclear and unlike embryonic stem cells (ESC) none of the major stem cell factors OCT4, SOX2, and NANOG exhibits significant expression in USSC. Here, we report that these key stem cell genes hold an epigenetic state in between that of an ESC and a terminally differentiated cell type. DNA methylation analysis exhibits partial demethylation of the regulatory region of OCT4 and a demethylated state of the NANOG and SOX2 promoter/enhancer regions. Further genome-wide DNA methylation profiling identified a partially demethylated state of the telomerase gene hTERT. Moreover, none of the pluripotency factors exhibited a repressive histone signature. Notably, SOX2 exhibits a bivalent histone signature consisting of the opposing histone marks dimeH3K4 and trimeH3K27, which is typically found on genes that are "poised" for transcription. Consequently, ectopic expression of OCT4 in USSC led to rapid induction of expression of its known target gene SOX2. Our data suggest that incomplete epigenetic repression and a "poised" epigenetic status of pluripotency genes preserves the USSC potential to be able to react adequately to distinct differentiation and reprogramming cues
    • …
    corecore