83 research outputs found

    Multi-species integrative biclustering

    Get PDF
    We describe an algorithm, multi-species cMonkey, for the simultaneous biclustering of heterogeneous multiple-species data collections and apply the algorithm to a group of bacteria containing Bacillus subtilis, Bacillus anthracis, and Listeria monocytogenes. The algorithm reveals evolutionary insights into the surprisingly high degree of conservation of regulatory modules across these three species and allows data and insights from well-studied organisms to complement the analysis of related but less well studied organisms

    A High Statistics Search for Ultra-High Energy Gamma-Ray Emission from Cygnus X-3 and Hercules X-1

    Full text link
    We have carried out a high statistics (2 Billion events) search for ultra-high energy gamma-ray emission from the X-ray binary sources Cygnus X-3 and Hercules X-1. Using data taken with the CASA-MIA detector over a five year period (1990-1995), we find no evidence for steady emission from either source at energies above 115 TeV. The derived upper limits on such emission are more than two orders of magnitude lower than earlier claimed detections. We also find no evidence for neutral particle or gamma-ray emission from either source on time scales of one day and 0.5 hr. For Cygnus X-3, there is no evidence for emission correlated with the 4.8 hr X-ray periodicity or with the occurrence of large radio flares. Unless one postulates that these sources were very active earlier and are now dormant, the limits presented here put into question the earlier results, and highlight the difficulties that possible future experiments will have in detecting gamma-ray signals at ultra-high energies.Comment: 26 LaTeX pages, 16 PostScript figures, uses psfig.sty to be published in Physical Review

    Open-access mega-journals: A bibliometric profile

    Get PDF
    In this paper we present the first comprehensive bibliometric analysis of eleven open-access mega-journals (OAMJs). OAMJs are a relatively recent phenomenon, and have been characterised as having four key characteristics: large size; broad disciplinary scope; a GoldOA business model; and a peer-review policy that seeks to determine only the scientific soundness of the research rather than evaluate the novelty or significance of the work. Our investigation focuses on four key modes of analysis: journal outputs (the number of articles published and changes in output over time); OAMJ author characteristics (nationalities and institutional affiliations); subject areas (the disciplinary scope of OAMJs, and variations in sub-disciplinary output); and citation profiles (the citation distributions of each OAMJ, and the impact of citing journals). We found that while the total output of the eleven megajournals grew by 14.9% between 2014 and 2015, this growth is largely attributable to the increased output of Scientific Reports and Medicine. We also found substantial variation in the geographical distribution of authors. Several journals have a relatively high proportion of Chinese authors, and we suggest this may be linked to these journals’ high Journal Impact Factors (JIFs). The mega-journals were also found to vary in subject scope, with several journals publishing disproportionately high numbers of articles in certain sub-disciplines. Our citation analsysis offers support for Björk & Catani’s suggestion that OAMJs’s citation distributions can be similar to those of traditional journals, while noting considerable variation in citation rates across the eleven titles. We conclude that while the OAMJ term is useful as a means of grouping journals which share a set of key characteristics, there is no such thing as a “typical” mega-journal, and we suggest several areas for additional research that might help us better understand the current and future role of OAMJs in scholarly communication

    Comparative Microbial Modules Resource: Generation and Visualization of Multi-species Biclusters

    Get PDF
    The increasing abundance of large-scale, high-throughput datasets for many closely related organisms provides opportunities for comparative analysis via the simultaneous biclustering of datasets from multiple species. These analyses require a reformulation of how to organize multi-species datasets and visualize comparative genomics data analyses results. Recently, we developed a method, multi-species cMonkey, which integrates heterogeneous high-throughput datatypes from multiple species to identify conserved regulatory modules. Here we present an integrated data visualization system, built upon the Gaggle, enabling exploration of our method's results (available at http://meatwad.bio.nyu.edu/cmmr.html). The system can also be used to explore other comparative genomics datasets and outputs from other data analysis procedures – results from other multiple-species clustering programs or from independent clustering of different single-species datasets. We provide an example use of our system for two bacteria, Escherichia coli and Salmonella Typhimurium. We illustrate the use of our system by exploring conserved biclusters involved in nitrogen metabolism, uncovering a putative function for yjjI, a currently uncharacterized gene that we predict to be involved in nitrogen assimilation

    The Somatic Genomic Landscape of Glioblastoma

    Get PDF
    We describe the landscape of somatic genomic alterations based on multi-dimensional and comprehensive characterization of more than 500 glioblastoma tumors (GBMs). We identify several novel mutated genes as well as complex rearrangements of signature receptors including EGFR and PDGFRA. TERT promoter mutations are shown to correlate with elevated mRNA expression, supporting a role in telomerase reactivation. Correlative analyses confirm that the survival advantage of the proneural subtype is conferred by the G-CIMP phenotype, and MGMT DNA methylation may be a predictive biomarker for treatment response only in classical subtype GBM. Integrative analysis of genomic and proteomic profiles challenges the notion of therapeutic inhibition of a pathway as an alternative to inhibition of the target itself. These data will facilitate the discovery of therapeutic and diagnostic target candidates, the validation of research and clinical observations and the generation of unanticipated hypotheses that can advance our molecular understanding of this lethal cancer

    Multiplatform Analysis of 12 Cancer Types Reveals Molecular Classification within and across Tissues of Origin

    Get PDF
    Recent genomic analyses of pathologically-defined tumor types identify “within-a-tissue” disease subtypes. However, the extent to which genomic signatures are shared across tissues is still unclear. We performed an integrative analysis using five genome-wide platforms and one proteomic platform on 3,527 specimens from 12 cancer types, revealing a unified classification into 11 major subtypes. Five subtypes were nearly identical to their tissue-of-origin counterparts, but several distinct cancer types were found to converge into common subtypes. Lung squamous, head & neck, and a subset of bladder cancers coalesced into one subtype typified by TP53 alterations, TP63 amplifications, and high expression of immune and proliferation pathway genes. Of note, bladder cancers split into three pan-cancer subtypes. The multi-platform classification, while correlated with tissue-of-origin, provides independent information for predicting clinical outcomes. All datasets are available for data-mining from a unified resource to support further biological discoveries and insights into novel therapeutic strategies
    corecore