600 research outputs found

    Ab initio study of semiconducting carbon nanotubes adsorbed on the Si(100) surface: diameter- and registration-dependent atomic configurations and electronic properties

    Full text link
    We present a first-principles study of semiconducting carbon nanotubes adsorbed on the unpassivated Si(100) surface. We have found metallicity for the combined system caused by n-doping of the silicon slab representing the surface by the SWNT. We confirm this metallicity for nanotubes of different diameters and chiral angles, and find the effect to be independent of the orientation of the nanotubes on the surface. We also present adsorption energetics and configurations which show semiconducting SWNTs farther apart from the surface and transferring less charge, in comparison with metallic SWNTs of similar diameter.Comment: Replaces old (Jan 2006) version; more supporting material. 11 pages, 8 figures, 7 table

    Laser transit anemometer measurements on a slender cone in the Langley unitary plan wind tunnel

    Get PDF
    A laser transit anemometer (LTA) system was used to probe the boundary layer on a slender (5 degree half angle) cone model in the Langley unitary plan wind tunnel. The anemometer system utilized a pair of laser beams with a diameter of 40 micrometers spaced 1230 micrometers apart to measure the transit times of ensembles of seeding particles using a cross-correlation technique. From these measurements, boundary layer profiles around the model were constructed and compared with CFD calculations. The measured boundary layer profiles representing the boundary layer velocity normalized to the edge velocity as a function of height above the model surface were collected with the model at zero angle of attack for four different flow conditions, and were collected in a vertical plane that bisected the model's longitudinal center line at a location 635 mm from the tip of the forebody cone. The results indicate an excellent ability of the LTA system to make velocity measurements deep into the boundary layer. However, because of disturbances in the flow field caused by onboard seeding, premature transition occurred implying that upstream seeding is mandatory if model flow field integrity is to be maintained. A description and results of the flow field surveys are presented

    Reduced-order representation of near-wall structures in the late transitional boundary layer

    No full text
    International audienceDirect numerical simulations (DNS) of controlled H- and K-type transitions to turbulence in an M=0.2 (where M is the Mach number) nominally zero-pressure-gradient and spatially developing flat-plate boundary layer are considered. Sayadi, Hamman & Moin (J. Fluid Mech., vol. 724, 2013, pp. 480-509) showed that with the start of the transition process, the skin-friction profiles of these controlled transitions diverge abruptly from the laminar value and overshoot the turbulent estimation. The objective of this work is to identify the structures of dynamical importance throughout the transitional region. Dynamic mode decomposition (DMD) (Schmid, J. Fluid Mech., vol. 656, 2010, pp. 5-28) as an optimal phase-averaging process, together with triple decomposition (Reynolds & Hussain, J. Fluid Mech., vol. 54 (02), 1972, pp. 263-288), is employed to assess the contribution of each coherent structure to the total Reynolds shear stress. This analysis shows that low-frequency modes, corresponding to the legs of hairpin vortices, contribute most to the total Reynolds shear stress. The use of composite DMD of the vortical structures together with the skin-friction coefficient allows the assessment of the coupling between near-wall structures captured by the low-frequency modes and their contribution to the total skin-friction coefficient. We are able to show that the low-frequency modes provide an accurate estimate of the skin-friction coefficient through the transition process. This is of interest since large-eddy simulation (LES) of the same configuration fails to provide a good prediction of the rise to this overshoot. The reduced-order representation of the flow is used to compare the LES and the DNS results within this region. Application of this methodology to the LES of the H-type transition illustrates the effect of the grid resolution and the subgrid-scale model on the estimated shear stress of these low-frequency modes. The analysis shows that although the shapes and frequencies of the low-frequency modes are independent of the resolution, the amplitudes are underpredicted in the LES, resulting in underprediction of the Reynolds shear stress

    Sparsity-promoting dynamic mode decomposition

    No full text
    International audienceDynamic mode decomposition (DMD) represents an effective means for capturing the essential features of numerically or experimentally generated flow fields. In order to achieve a desirable tradeoff between the quality of approximation and the number of modes that are used to approximate the given fields, we develop a sparsity-promoting variant of the standard DMD algorithm. Sparsity is induced by regularizing the least-squares deviation between the matrix of snapshots and the linear combination of DMD modes with an additional term that penalizes the l(1)-norm of the vector of DMD amplitudes. The globally optimal solution of the resulting regularized convex optimization problem is computed using the alternating direction method of multipliers, an algorithm well-suited for large problems. Several examples of flow fields resulting from numerical simulations and physical experiments are used to illustrate the effectiveness of the developed method. (C) 2014 AIP Publishing LLC

    NDE Software Developed at NASA Glenn Research Center

    Get PDF
    NASA Glenn Research Center has developed several important Nondestructive Evaluation (NDE) related software packages for different projects in the last 10 years. Three of the software packages have been created with commercial-grade user interfaces and are available to United States entities for download on the NASA Technology Transfer and Partnership Office server (https://sr.grc.nasa.gov/). This article provides brief overviews of the software packages

    Economic Foundations of the Current Regulatory Reform Efforts

    Get PDF
    article published in economic journalAlmost since the inception of the risk and environmental agencies in the early 1970s, there has been a continuing concern with ensuring that regulations yield societal benefits commensurate with their costs. This recognition of the need for balance, in turn, has led policymakers to seek a greater role for economists, and the principles of economic analysis undoubtedly will continue to play a central role in the debate over the future of regulatory policy

    ABCC9/SUR2 in the Brain: Implications for Hippocampal Sclerosis of Aging and a Potential Therapeutic Target

    Get PDF
    The ABCC9 gene and its polypeptide product, SUR2, are increasingly implicated in human neurologic disease, including prevalent diseases of the aged brain. SUR2 proteins are a component of the ATP-sensitive potassium (“K ATP ”) channel, a metabolic sensor for stress and/or hypoxia that has been shown to change in aging. The K ATP channel also helps regulate the neurovascular unit. Most brain cell types express SUR2, including neurons, astrocytes, oligodendrocytes, microglia, vascular smooth muscle, pericytes, and endothelial cells. Thus it is not surprising that ABCC9 gene variants are associated with risk for human brain diseases. For example, Cantu syndrome is a result of ABCC9 mutations; we discuss neurologic manifestations of this genetic syndrome. More common brain disorders linked to ABCC9 gene variants include hippocampal sclerosis of aging (HS-Aging), sleep disorders, and depression. HS-Aging is a prevalent neurological disease with pathologic features of both neurodegenerative (aberrant TDP-43) and cerebrovascular (arteriolosclerosis) disease. As to potential therapeutic intervention, the human pharmacopeia features both SUR2 agonists and antagonists, so ABCC9 /SUR2 may provide a “druggable target”, relevant perhaps to both HS-Aging and Alzheimer\u27s disease. We conclude that more work is required to better understand the roles of ABCC9 /SUR2 in the human brain during health and disease conditions

    X-Atlas: An Online Archive of Chandra's Stellar High Energy Transmission Gratings Observations

    Full text link
    The high-resolution X-ray spectroscopy made possible by the 1999 deployment of the Chandra X-ray Observatory has revolutionized our understanding of stellar X-ray emission. Many puzzles remain, though, particularly regarding the mechanisms of X-ray emission from OB stars. Although numerous individual stars have been observed in high-resolution, realizing the full scientific potential of these observations will necessitate studying the high-resolution Chandra dataset as a whole. To facilitate the rapid comparison and characterization of stellar spectra, we have compiled a uniformly processed database of all stars observed with the Chandra High Energy Transmission Grating (HETG). This database, known as X-Atlas, is accessible through a web interface with searching, data retrieval, and interactive plotting capabilities. For each target, X-Atlas also features predictions of the low-resolution ACIS spectra convolved from the HETG data for comparison with stellar sources in archival ACIS images. Preliminary analyses of the hardness ratios, quantiles, and spectral fits derived from the predicted ACIS spectra reveal systematic differences between the high-mass and low-mass stars in the atlas and offer evidence for at least two distinct classes of high-mass stars. A high degree of X-ray variability is also seen in both high and low-mass stars, including Capella, long thought to exhibit minimal variability. X-Atlas contains over 130 observations of approximately 25 high-mass stars and 40 low-mass stars and will be updated as additional stellar HETG observations become public. The atlas has recently expanded to non-stellar point sources, and Low Energy Transmission Grating (LETG) observations are currently being added as well

    Analysis of the giant genomes of Fritillaria (Liliaceae) indicates that a lack of DNA removal characterizes extreme expansions in genome size.

    Get PDF
    This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.Plants exhibit an extraordinary range of genome sizes, varying by > 2000-fold between the smallest and largest recorded values. In the absence of polyploidy, changes in the amount of repetitive DNA (transposable elements and tandem repeats) are primarily responsible for genome size differences between species. However, there is ongoing debate regarding the relative importance of amplification of repetitive DNA versus its deletion in governing genome size. Using data from 454 sequencing, we analysed the most repetitive fraction of some of the largest known genomes for diploid plant species, from members of Fritillaria. We revealed that genomic expansion has not resulted from the recent massive amplification of just a handful of repeat families, as shown in species with smaller genomes. Instead, the bulk of these immense genomes is composed of highly heterogeneous, relatively low-abundance repeat-derived DNA, supporting a scenario where amplified repeats continually accumulate due to infrequent DNA removal. Our results indicate that a lack of deletion and low turnover of repetitive DNA are major contributors to the evolution of extremely large genomes and show that their size cannot simply be accounted for by the activity of a small number of high-abundance repeat families.Thiswork was supported by the Natural Environment ResearchCouncil (grant no. NE/G017 24/1), the Czech Science Fou nda-tion (grant no. P501/12/G090), the AVCR (grant no.RVO:60077344) and a Beatriu de Pinos postdoctoral fellowshipto J.P. (grant no. 2011-A-00292; Catalan Government-E.U. 7thF.P.)

    Evaluation of the association between pen fecal accumulation and prevalence of Salmonella enterica shedding in swine

    Get PDF
    One of the recommended control measures for Salmonella enterica is improved or adequate fann hygiene. Although loosely defined, a component of good hygiene practice is to minimize animal contact with feces. Increased exposure to feces would he expected to increase the likelihood of transmission and fecal shedding of Salmonella enterica. There are indications in the literature that decreased animal contact with feces may result in a decreased risk for Salmonella enterica infection. Davies et al. demonstrated increased mean prevalence in open-flush gutter and dirt lot systems when compared to pigs housed on total slatted flooring systems. Paradoxically, three-site, all-in!all-out pig flow systems did not have a significantly different mean Salmonella enterica prevalence when compared to one-site continuous flow fanns. A similar incongruity is the evidence that in poultry barns, birds placed on used litter had lower risk of salmonella shedding than birds placed on clean litter.(5) Proposed mechanisms of this result are colonization with competitive flora from the used litter as well as an inhibitory environment for Salmonella enterica. The subjective nature of determining adequate hygiene as well as the presence of apparently contradictory results regarding hygiene and prevalence of Salmonella shedding in animals warrants inquiry into the question of what is good hygiene in respect to Salmonella shedding in animals
    corecore