4 research outputs found

    Validation of weak biological effects by round robin experiments: Cytotoxicity/biocompatibility of SiO2 and polymer nanoparticles in HepG2 cells

    Get PDF
    All over the world, different types of nanomaterials with a diversified spectrum of applications are designed and developed, especially in the field of nanomedicine. The great variety of nanoparticles (NPs), in vitro test systems and cell lines led to a vast amount of publications with conflicting data. To identify the decisive principles of these variabilities, we conducted an intercomparison study of collaborating laboratories within the German DFG Priority Program SPP1313, using well-defined experimental parameters and well-characterized NPs. The participants analyzed the in vitro biocompatibility of silica and polymer NPs on human hepatoma HepG2 cells. Nanoparticle mediated effects on cell metabolism, internalization, and inflammation were measured. All laboratories showed that both nanoparticle formulations were internalized and had a low cytotoxicity profile. Interestingly, small variations in nanoparticle preparation, cell handling and the type of culture slide influenced the nanoparticle stability and the outcomes of cell assays. The round robin test demonstrated the importance of the use of clearly defined and characterized NPs and parameters for reproducible results across laboratories. Comparative analyses of in vitro screening methods performed in multiple laboratories are absolutely essential to establish robust standard operation procedure as a prerequisite for sound hazard assessment of nanomaterials

    Epigenetic modifications precede molecular alterations and drive human hepatocarcinogenesis

    No full text
    Development of primary liver cancer is a multistage process. Detailed understanding of sequential epigenetic alterations is largely missing. Here, we performed Infinium Human Methylation 450k BeadChips and RNA-Seq analyses for genome-wide methylome and transcriptome profiling of cirrhotic liver (n = 7), low-(n = 4) and high-grade (n = 9) dysplastic lesions, and early (n = 5) and progressed (n = 3) hepatocellular carcinomas (HCC) synchronously detected in 8 patients with HCC with chronic hepatitis B infection. Integrative analyses of epigenetically driven molecular changes were identified and validated in 2 independent cohorts comprising 887 HCCs. Mitochondrial DNA sequencing was further employed for clonality analyses, indicating multiclonal origin in the majority of investigated HCCs. Alterations in DNA methylation progressively increased from liver cirrhosis (CL) to dysplastic lesions and reached a maximum in early HCCs. Associated early alterations identified by Ingenuity Pathway Analysis (IPA) involved apoptosis, immune regulation, and stemness pathways, while late changes centered on cell survival, proliferation, and invasion. We further validated 23 putative epidrivers with concomitant expression changes and associated with overall survival. Functionally, Striatin 4 (STRN4) was demonstrated to be epigenetically regulated, and inhibition of STRN4 significantly suppressed tumorigenicity of HCC cell lines. Overall, application of integrative genomic analyses defines epigenetic driver alterations and provides promising targets for potentially novel therapeutic approaches
    corecore