1,638 research outputs found

    The Sunyaev-Zel'dovich temperature of the intracluster medium

    Get PDF
    The relativistic Sunyaev-Zel'dovich (SZ) effect offers a method, independent of X-ray, for measuring the temperature of the intracluster medium (ICM) in the hottest systems. Here, using N-body/hydrodynamic simulations of three galaxy clusters, we compare the two quantities for a non-radiative ICM, and for one that is subject both to radiative cooling and strong energy feedback from galaxies. Our study has yielded two interesting results. Firstly, in all cases, the SZ temperature is hotter than the X-ray temperature and is within ten per cent of the virial temperature of the cluster. Secondly, the mean SZ temperature is less affected by cooling and feedback than the X-ray temperature. Both these results can be explained by the SZ temperature being less sensitive to the distribution of cool gas associated with cluster substructure. A comparison of the SZ and X-ray temperatures (measured for a sample of hot clusters) would therefore yield interesting constraints on the thermodynamic structure of the intracluster gas.Comment: This version accepted for publication in MNRAS following minor revisio

    A Mixed Methods Empirical Examination of Changes in Emphasis and Style in the Extremist Magazines Dabiq and Rumiyah

    Get PDF
    The change in name of ISIS’s flagship English language magazine from Dabiq to Rumiyah prompted media speculation about its significance. This article uses a mixed methods approach that integrates a qualitative social semiotic discourse analysis approach with quantitative methods of information visualisation to examine empirically changes in emphasis and approach in both magazines over time to determine whether the changes are ones of style or substance. The paper argues that, while ISIS has changed its strategic focus over time in response to its changing fortunes, the organisation’s underlying world view, values and ultimate aims remain consistent and unchanged

    Technical note: dental microwear textures of Phase I and Phase II facets

    Get PDF
    The power stroke of mastication has been traditionally divided into two parts, one which precedes centric occlusion, and the other which follows it- Phase I and Phase II, respectively. Recent studies of primate mastication have called into question the role of Phase II in food processing, as they have found little muscle activity or accompanying bone strain following centric occlusion. That said, many researchers today look to Phase II facets to relate diet to patterns of dental microwear. This suggests the need to reevaluate microwear patterns on Phase I facets. Here we use texture analysis to compare and contrast microwear on facets representing both phases in three primate species with differing diets (Alouatta palliata, Cebus apella, and Lophocebus albigena). Results reaffirm that microwear patterns on Phase II facets better distinguish taxa with differing diets than do those on Phase I facets. Further, differences in microwear textures between facet types for a given taxon may themselves reflect diet. Some possible explanations for differences in microwear textures between facet types are proposed

    The melting of floating ice raises the ocean level

    Get PDF
    Publisher's version/PDFIt is shown that the melting of ice floating on the ocean will introduce a volume of water about 2.6 per cent greater than that of the originally displaced sea water. The melting of floating ice in a global warming will cause the ocean to rise. If all the extant sea ice and floating shelf ice melted, the global sea level would rise about 4 cm. The sliding of grounded ice into the sea, however, produces a mean water level rise in two parts; some of the rise is delayed. The first part, while the ice floats, is equal to the volume of displaced sea water. The second part, equal to 2.6 per cent of the first, is contributed as it melts. These effects result from the difference in volume of equal weights of fresh and salt water. This component of sea rise is apparently unrecognized in the literature to date, although it can be interpreted as a form of halosteric sea level change by regarding the displaced salt water and the meltwater (even before melting) as a unit. Although salinity changes are known to affect sea level, all existing analyses omit our calculated volume change. We present a protocol that can be used to calculate global sea level rise on the basis of the addition of meltwater from grounded and floating ice; of course thermosteric volume change must be added

    Evolution of X-ray cluster scaling relations in simulations with radiative cooling and non-gravitational heating

    Get PDF
    We investigate the redshift dependence of X-ray cluster scaling relations drawn from three hydrodynamic simulations of the LCDM cosmology: a Radiative model that incorporates radiative cooling of the gas, a Preheating model that additionally heats the gas uniformly at high redshift, and a Feedback model that self-consistently heats cold gas in proportion to its local star-formation rate. While all three models are capable of reproducing the observed local Lx-Tx relation, they predict substantially different results at high redshift (to z=1.5), with the Radiative, Preheating and Feedback models predicting strongly positive, mildly positive and mildly negative evolution, respectively. The physical explanation for these differences lies in the structure of the intracluster medium. All three models predict significant temperature fluctuations at any given radius due to the presence of cool subclumps and, in the case of the Feedback simulation, reheated gas. The mean gas temperature lies above the dynamical temperature of the halo for all models at z=0, but differs between models at higher redshift with the Radiative model having the lowest mean gas temperature at z=1.5. We have not attempted to model the scaling relations in a manner that mimics the observational selection effects, nor has a consistent observational picture yet emerged. Nevertheless, evolution of the scaling relations promises to be a powerful probe of the physics of entropy generation in clusters. First indications are that early, widespread heating is favored over an extended period of heating that is associated with galaxy formation.Comment: Accepted for publication in ApJ. Minor changes following referee's comment

    Cosmological simulations of galaxy clusters with feedback from active galactic nuclei: profiles and scaling relations

    Get PDF
    We present results from a new set of 30 cosmological simulations of galaxy clusters, including the effects of radiative cooling, star formation, supernova feedback, black hole growth and AGN feedback. We first demonstrate that our AGN model is capable of reproducing the observed cluster pressure profile at redshift, z ≃ 0, once the AGN heating temperature of the targeted particles is made to scale with the final virial temperature of the halo. This allows the ejected gas to reach larger radii in higher mass clusters than would be possible had a fixed heating temperature been used. Such a model also successfully reduces the star formation rate in brightest cluster galaxies and broadly reproduces a number of other observational properties at low redshift, including baryon, gas and star fractions, entropy profiles outside the core and the X-ray luminosity–mass relation. Our results are consistent with the notion that the excess entropy is generated via selective removal of the densest material through radiative cooling; supernova and AGN feedback largely serve as regulation mechanisms, moving heated gas out of galaxies and away from cluster cores. However, our simulations fail to address a number of serious issues; for example, they are incapable of reproducing the shape and diversity of the observed entropy profiles within the core region. We also show that the stellar and black hole masses are sensitive to numerical resolution, particularly the gravitational softening length; a smaller value leads to more efficient black hole growth at early times and a smaller central galaxy

    The power spectrum amplitude from clusters revisited: σ8 using simulations with preheating and cooling

    Get PDF
    The amplitude of density perturbations, for the currently-favoured CDM cosmology, is constrained using the observed properties of galaxy clusters. The catalogue used is that of Ikebe et al. The relation of cluster temperature to mass is obtained via N-body/hydrodynamical simulations including radiative cooling and pre-heating of cluster gas, which we have previously shown to reproduce well the observed temperature–mass relation in the innermost parts of clusters. We generate and compare mock catalogues via a Monte Carlo method, which allows us to constrain the relation between X-ray temperature and luminosity, including its scatter, simultaneously with cosmological parameters. We find a luminosity–temperature relation in good agreement with the results of Ikebe et al., while for the matter power spectrum normalization, we find σ8 = 0.78+0.30 −0.06 at 95 per cent confidence for 0 = 0.35. Scaling to the Wilkinson Microwave Anisotropy Probe central value of 0 = 0.27 would give a best-fitting value of σ8 ≃ 0.9
    • …
    corecore