140 research outputs found

    Osteoporosis: An Age-Related and Gender-Specific Disease – A Mini-Review

    Get PDF
    Osteoporosis, a classical age-related disease and known to be more common in women than in men, has been reported increasingly often in men during the past few years. Although men at all ages after puberty have larger bones than women, resulting in greater bending strength, mortality after a hip fracture, one of the major complications of osteoporosis, is more common in men than in women. Sex hormone deficiency is associated with unrestrained osteoclast activity and bone loss. Even though estrogen deficiency is more pronounced in women, it appears to be a major factor in the pathogenesis of osteoporosis in both genders. In contrast to osteoporosis in postmenopausal women, the treatment of osteoporosis in men has been scarcely reported. Nevertheless, some drugs commonly used for the treatment of osteoporosis in women also appear to be effective in men. The aim of this study is to review primary osteoporosis in the elderly with particular emphasis on gender-related aspects.Dieser Beitrag ist mit Zustimmung des Rechteinhabers aufgrund einer (DFG-geförderten) Allianz- bzw. Nationallizenz frei zugänglich

    Is weight loss harmful for skeletal health in obese older adults?

    Get PDF
    Purpose of Review: In view of the existing uncertainty about the implications of intentional weight loss in older obese adults, the present review (a) summarizes the available evidence from epidemiological and interventional studies concerning the effects of weight loss through lifestyle modifications on skeletal health parameters in older overweight/obese individuals, (b) proposes mechanisms that link weight loss to bone loss in this age group, and (c) identifies appropriate animal models. Main Findings and Future Directions: Based on prospective epidemiological studies, weight loss is associated with bone loss, impaired bone macro- and microstructure, and increased fracture risk in the elderly. Data from interventional studies confirm the negative effects of intentional weight loss achieved by lifestyle modifications on skeletal health outcomes in obese older individuals. These effects appear to be modest following a single weight loss attempt, but may persist in the longer term, and presumably, during subsequent weight loss efforts. Current evidence suggests that resistance exercise coupled with caloric restriction mitigates bone and muscle loss. However, alternative strategies do not exist for older individuals, especially those who are unable or unwilling to exercise. Clinical weight loss studies in obese older individuals and preclinical research in relevant animal models with obesity and osteoporosis are required. These will advance our understanding of the pathophysiology of weight-loss-associated skeletal alterations and provide evidence on how bone loss can be counteracted or prevented

    The Incidence and Clinical Relevance of Graft Hypertrophy After Matrix-Based Autologous Chondrocyte Implantation

    Get PDF
    Background: Graft hypertrophy is the most common complication of periosteal autologous chondrocyte implantation (p-ACI). Purpose: The aim of this prospective study was to analyze the development, the incidence rate, and the persistence of graft hypertrophy after matrix-based autologous chondrocyte implantation (mb-ACI) in the knee joint within a 2-year postoperative course. Study Design: Case series; Level of evidence, 4. Methods: Between 2004 and 2007, a total of 41 patients with 44 isolated cartilage defects of the knee were treated with the mb-ACI technique. The mean age of the patients was 35.8 years (standard deviation [SD], 11.3 years), and the mean body mass index was 25.9 (SD, 4.2; range, 19-35.3). The cartilage defects were arthroscopically classified as Outerbridge grades III and IV. The mean area of the cartilage defect measured 6.14 cm2 (SD, 2.3 cm2). Postoperative clinical and magnetic resonance imaging (MRI) examinations were conducted at 3, 6, 12, and 24 months to analyze the incidence and course of the graft. Results: Graft hypertrophy developed in 25% of the patients treated with mb-ACI within a postoperative course of 1 year; 16% of the patients developed hypertrophy grade 2, and 9% developed hypertrophy grade 1. Graft hypertrophy occurred primarily in the first 12 months and regressed in most cases within 2 years. The International Knee Documentation Committee (IKDC) and visual analog scale (VAS) scores improved during the postoperative follow-up time of 2 years. There was no difference between the clinical results regarding the IKDC and VAS pain scores and the presence of graft hypertrophy. Conclusion: The mb-ACI technique does not lead to graft hypertrophy requiring treatment as opposed to classic p-ACI. The frequency of occurrence of graft hypertrophy after p-ACI and mb-ACI is comparable. Graft hypertrophy can be considered as a temporary excessive growth of regenerative cartilage tissue rather than a true graft hypertrophy. It is therefore usually not a persistent or systematic complication in the treatment of circumscribed cartilage defects with mb-ACI

    Osteoporosis and Sarcopenia Increase Frailty Syndrome in the Elderly

    Get PDF
    Musculoskeletal aging is a major public health interesting and strain due to the significant demographic modifications in the population, and it is linked to high risk of falls, loss of autonomy in elderly individuals and institutionalization with small health outcomes. Thus, this pathological status is related to high morbidity and health care rates. Bone mass and muscle mass and strength increase during late adolescence and early adulthood but start to reduce noticeably from the fifth decade of life and are closely linked. Bone and muscle tissues were increasingly recognized, as endocrine target organs and endocrine organs themselves, interacting through paracrine and endocrine signals. During growth, bone mineral content closely correlates with muscle mass, and several evidences suggest that osteoporosis and sarcopenia present common pathophysiological factors and show the correlation between low bone mineral density and sarcopenia in both men and women. Then, sarcopenia and osteoporosis, typical features of aging, are often associated with each other and with the frailty syndrome. In particular, sarcopenia and osteoporosis are major contributors to disability and frailty and the common denominators are age-related chronic inflammation, changes in body composition and hormonal imbalance. Frailty syndrome is characterized by a reduced response to stress, triggering the decline of the physiological functioning of the various systems. Frailty syndrome, typical of the older people, is frequently associated with a reduction in the quality of life and mobility. Falls often are the basis of reduced mobility and ability to perform the common functions of daily life and the increase in the number of institutionalizations. Moreover, the reduction of muscle mass, associated with altered muscle composition, fat and fibrous infiltration and alterations in innervations, and the increase in fat mass, have a synergistic effect on the increase in cardiovascular risk. The aim of this review is to analyze the pathophysiological mechanisms underlying the frailty syndrome and its association with sarcopenia and osteoporosis, and investigate possible intervention measures

    Rheumatoid arthritis synovium contains plasmacytoid dendritic cells

    Get PDF
    We have previously described enrichment of antigen-presenting HLA-DR(+ )nuclear RelB(+ )dendritic cells (DCs) in rheumatoid arthritis (RA) synovium. CD123(+)HLA-DR(+ )plasmacytoid DCs (pDCs) and their precursors have been identified in human peripheral blood (PB), lymphoid tissue, and some inflamed tissues. We hypothesized recruitment of pDCs into the inflamed RA synovial environment and their contribution as antigen-presenting cells (APCs) and inflammatory cells in RA. CD11c(+ )myeloid DCs and CD123(+ )pDCs were compared in normal and RA PB, synovial fluid (SF), and synovial tissue by flow cytometry, immunohistochemistry, and electron microscopy and were sorted for functional studies. Nuclear RelB(-)CD123(+ )DCs were located in perivascular regions of RA, in a similar frequency to nuclear RelB(+)CD123(- )DCs, but not normal synovial tissue sublining. Apart from higher expression of HLA-DR, the numbers and phenotypes of SF pDCs were similar to those of normal PB pDCs. While the APC function of PB pDCs was less efficient than that of PB myeloid DCs, RA SF pDCs efficiently activated resting allogeneic PB T cells, and high levels of IFN-γ, IL-10, and tumor necrosis factor α were produced in response to incubation of allogeneic T cells with either type of SF DCs. Thus, pDCs are recruited to RA synovial tissue and comprise an APC population distinct from the previously described nuclear RelB(+ )synovial DCs. pDCs may contribute significantly to the local inflammatory environment

    Effect of the defect localization and size on the success of third-generation autologous chondrocyte implantation in the knee joint

    Get PDF
    Introduction. Femoral and patellar cartilage defects with a defect size > 2.5 cm2 are a potential indication for an autologous chondrocyte implantation (ACI). However, the influence of the localization and the absolute and relative defect size on the clinical outcome has not yet been determined. The purpose of this study is to analyze the influence of the localization and the absolute and relative defect size on the clinical outcome after third-generation autologous chondrocyte implantation. Methods. A total of 50 patients with cartilage defects of the knee were treated with third-generation autologous chondrocyte implantation (Novocart® 3D). A match paired analysis was performed of 25 treated femoral and 25 treated patella defects with a follow-up of three years. MRI data was used to do the manual segmentation of the cartilage layer throughout the knee joint. The defect size was determined by taking the defect size measured in the MRI in relation to the whole cartilage area. The clinical outcome was measured by the IKDC score and VAS pre-operatively and after six, 12, 24, and 36 months post-operatively. Results. IKDC and VAS scores showed a significant improvement from the baseline in both groups. Femoral cartilage defects showed significantly superior clinical results in the analyzed scores compared to patellar defects. The femoral group improved IKDC from 33.9 (SD 18.1) pre-operatively to 71.5 (SD 17.4) after three years and the VAS from 6.9 (SD 2.9) pre-operatively to 2.4 (SD 2.5) after three years. In the patellar group, IKDC improved from 36.1 (SD 12.6) pre-operatively to 54.7 (SD 20.3) after three years and the VAS improved from 6.7 (SD 2.8) pre-operatively to 3.4 (SD 2.) after three years. Regarding the defect size, results showed that the same absolute defect size at med FC (4.8, range 2–15) and patella (4.6, range 2–12) has a significantly different share of the total cartilaginous size of the joint compartment (med FC: 6.7, range 1.2–13.9; pat: 18.9, range 4.0–47.0). However, there was no significant influence of the relative defect size on the clinical outcome in either patellar or femoral localization. Conclusion. Third-generation autologous chondrocyte implantation in ACI-treated femoral cartilage defects leads to a superior clinical outcome in a follow-up of three years compared with patellar defects. No significant influence of the defect size was found in either femoral or patellar cartilage defects
    • …
    corecore