67 research outputs found

    Quantum Plasmonics: Optical Properties of a Nanomatryushka

    No full text
    Quantum mechanical effects can significantly reduce the plasmon-induced field enhancements around nanoparticles. Here we present a quantum mechanical investigation of the plasmon resonances in a nanomatryushka, which is a concentric core–shell nanoparticle consisting of a solid metallic core encapsulated in a thin metallic shell. We compute the optical response using the time-dependent density functional theory and compare the results with predictions based on the classical electromagnetic theory. We find strong quantum mechanical effects for core–shell spacings below 5 Å, a regime where both the absorption cross section and the local field enhancements differ significantly from the classical predictions. We also show that the workfunction of the metal is a crucial parameter determining the onset and magnitude of quantum effects. For metals with lower workfunctions such as aluminum, the quantum effects are found to be significantly more pronounced than for a noble metal such as gold

    Mechanisms of Fano Resonances in Coupled Plasmonic Systems

    No full text
    Fano resonances in hybridized systems formed from the interaction of bright modes only are reported. Despite precedent works, we demonstrate theoretically and experimentally that Fano resonances can be obtained by destructive interference between two bright dipolar modes out of phase. A simple oscillator model is provided to predict and fit the far-field scattering. The predictions are verified with numerical calculations using a surface integral equation method for a wide range of geometrical parameters. The validity of the model is then further demonstrated with experimental dark-field scattering measurements on actual nanostructures in the visible range. A remarkable set of properties like crossings, avoided crossings, inversion of subradiant and superradiant modes and a plasmonic equivalent of a bound state in the continuum are presented. The nanostructure, that takes advantage of the combination of Fano resonance and nanogap effects, also shows high tunability and strong near-field enhancement. Our study provides a general understanding of Fano resonances as well as a simple tool for engineering their spectral features

    Plasmon Blockade in Nanostructured Graphene

    No full text
    Among the many extraordinary properties of graphene, its optical response allows one to easily tune its interaction with nearby molecules <i>via</i> electrostatic doping. The large confinement displayed by plasmons in graphene nanodisks makes it possible to reach the strong-coupling regime with a nearby quantum emitter, such as a quantum dot or a molecule. In this limit, the quantum emitter can introduce a significant plasmon–plasmon interaction, which gives rise to a plasmon blockade effect. This produces, in turn, strongly nonlinear absorption cross sections and modified statistics of the bosonic plasmon mode. We characterize these phenomena by studying the equal-time second-order correlation function <i>g</i><sup>(2)</sup>(0), which plunges below a value of 1, thus revealing the existence of nonclassical plasmon states. The plasmon-emitter coupling, and therefore the plasmon blockade, can be efficiently controlled by tuning the doping level of the graphene nanodisks. The proposed system emerges as a new promising platform to realize quantum plasmonic devices capable of commuting optical signals at the single-photon/plasmon level

    Porous Au Nanoparticles with Tunable Plasmon Resonances and Intense Field Enhancements for Single-Particle SERS

    No full text
    Porous Au nanoparticles with fine-controlled overall particle sizes have been fabricated using a kinetically controlled seed-mediated growth method. In contrast to spherical Au nanoparticles with smooth surfaces, the porous Au nanoparticles exhibit far greater size-dependent plasmonic tunability and significantly intensified local electric field enhancements exploitable for single-particle plasmon-enhanced spectroscopies. The effects of the nanoscale porosity on the far- and near-field optical properties of the nanoparticles have been investigated both experimentally by optical extinction and single-nanoparticle Raman spectroscopic measurements and theoretically through finite-difference time-domain calculations

    Relaxation of Plasmon-Induced Hot Carriers

    No full text
    Plasmon-induced hot carrier generation has attracted much recent attention due to its promising potential in photocatalysis and other light harvesting applications. Here we develop a theoretical model for hot carrier relaxation in metallic nanoparticles using a fully quantum mechanical jellium model. Following pulsed illumination, nonradiative plasmon decay results in a highly nonthermal distribution of hot electrons and holes. Using coupled master equations, we calculate the time-dependent evolution of this carrier distribution in the presence of electron–electron, electron–photon, and electron–phonon scattering. Electron–electron relaxation is shown to be the dominant scattering mechanism and results in efficient carrier multiplication where the energy of the initial hot electron–hole pair is transferred to other multiple electron–hole pair excitations of lower energies. During this relaxation, a small but finite fraction of electrons scatter into luminescent states where they can recombine radiatively with holes by emission of photons. The energy of the emitted photons is found to follow the energies of the electrons and thus redshifts monotonically during the relaxation process. When the energies of the electrons approach the Fermi level, electron–phonon interaction becomes dominant and results in heating of the nanoparticle. We generalize the model to continuous-wave excitation and show how nonlinear effects become important when the illumination intensity increases. When the temporal spacing between incident photons is shorter than the relaxation time of the hot carriers, we predict that the photoluminescence will blueshift with increasing illumination power. Finally, we discuss the effect of the photonic density of states (Purcell factor) on the luminescence spectra

    Electron Energy-Loss Spectroscopy Calculation in Finite-Difference Time-Domain Package

    No full text
    Electron energy-loss spectroscopy (EELS) is a unique tool that is extensively used to investigate the plasmonic response of metallic nanostructures. We present here a novel approach for EELS calculations using the finite-difference time-domain (FDTD) method (EELS-FDTD). We benchmark our approach by direct comparison with results from the well-established boundary element method (BEM) and published experimental results. In particular, we compute EELS spectra for spherical nanoparticles, nanoparticle dimers, nanodisks supported by various substrates, and a gold bowtie antenna on a silicon nitride substrate. Our EELS-FDTD method can be easily extended to more complex geometries and configurations. This implementation can also be directly exported beyond the FDTD framework and implemented in other Maxwell’s equation solvers

    Asymmetric Aluminum Antennas for Self-Calibrating Surface-Enhanced Infrared Absorption Spectroscopy

    No full text
    While there has been a tremendous increase of recent interest in noble metal-based antennas as substrates for surface-enhanced infrared absorption spectroscopy, more abundant and manufacturable metals may offer similar or additional opportunities for this mid-infrared sensing modality. Here we examine the feasibility of aluminum antennas for SEIRA, by designing and fabricating asymmetric aluminum cross antennas with nanometer-scale gaps. The asymmetric cross design enables the simultaneous detection of multiple infrared vibrational resonances over a broad region of the mid-infrared spectrum. The presence of the Al<sub>2</sub>O<sub>3</sub> amorphous surface oxide layer not only passivates the metal antenna structures but also enables a very straightforward covalent binding chemistry for analyte molecules to the antenna through multiple approaches, in this case by the use of carboxylic acid functional groups. The aluminum–oxygen stretching mode of the oxide can be used as a self-calibration standard to quantify the number of analyte molecules on the antenna surface

    Fabrication of Elliptical Nanorings with Highly Tunable and Multiple Plasmonic Resonances

    No full text
    Herein, a new and facile patterning method is demonstrated for the scalable fabrication of gold elliptical rings (ERs) in a controlled manner over large areas. In this method, well-ordered hexagonally arrayed polystyrene (PS) rings, fabricated by colloidal lithography, were used as masters to generate poly­(dimethylsiloxane) (PDMS) stamps with circular apertures. The stamps were then stretched and utilized as molds for creating elliptical PS rings by a capillary filling process. Through subsequent reactive ion etching and chemical wet-etching, the elliptical PS rings could be readily transferred into an underlying gold film, leading to the formation of gold ERs. Since the aspect ratio (AR) of the elliptical PS rings could be controlled by varying the applied strain during the capillary filling process, gold ERs with different ARs could be fabricated in a scalable manner. The optical properties of the gold ERs were characterized by UV–vis/NIR and IR extinction measurements. The ERs exhibited only odd modes of polarization-dependent plasmonic resonances at normal incidence. The experiments and corresponding theoretical studies illustrated that all resonant modes could be tuned across a broad spectral range from the visible to the mid infrared (550–4700 nm) by simply varying the AR of the ERs. Moreover, the experimental data were confirmed by COMSOL simulations

    Fabrication of Split-Rings via Stretchable Colloidal Lithography

    No full text
    Herein, a facile new patterning method is demonstrated for creating pairs of split-ring resonators (SRRs) in a scalable manner over large surface areas. This method is based on a novel variation of colloidal lithography called stretchable colloidal lithography (SCL), which combines conventional colloidal lithography and stretchable poly­(dimethylsiloxane) (PDMS) molds. To fabricate SRRs, arrays of circular polystyrene (PS) rings were fabricated by conventional colloidal lithography. The circular ring features could be transferred to a PDMS stamp, forming negative features, circular apertures on the stamp. The PDMS stamp was then stretched, thereby transforming the circular apertures into elliptical ones. By using the stretched PDMS molds for polymer imprinting, elliptical rings with nonuniform heights could be fabricated. Each elliptical ring could be transformed into a pair of PS SRRs by controlled O<sub>2</sub> reactive ion etching. Through a subsequent chemical wet etching step, PS SRRs could be readily transferred into an underlying gold film. The SRRs exhibited multiple modes of polarization-dependent plasmonic resonances in the visible and infrared spectral regions. Experiments and corresponding theoretical modeling demonstrated that these multiple resonances could be tuned in a predictable manner. All optical data compared well with results from electromagnetic simulations

    Standing Wave Plasmon Modes Interact in an Antenna-Coupled Nanowire

    No full text
    In a standing wave optical cavity, the coupling of cavity modes, for example, through a nonlinear medium, results in a rich variety of nonlinear dynamical phenomena, such as frequency pushing and pulling, mode-locking and pulsing, modal instabilities, even complex chaotic behavior. Metallic nanowires of finite length support a hierarchy of longitudinal surface plasmon modes with standing wave properties: the plasmonic analog of a Fabry–Pérot cavity. Here we show that positioning the nanowire within the gap of a plasmonic nanoantenna introduces a passive, hybridization-based coupling of the standing-wave nanowire plasmon modes with the antenna structure, mediating an interaction between the nanowire plasmon modes themselves. Frequency pushing and pulling, and the enhancement and suppression of specific plasmon modes, can be controlled and manipulated by nanoantenna position and shape
    • 

    corecore