Porous Au Nanoparticles with Tunable Plasmon Resonances and Intense Field Enhancements for Single-Particle SERS

Abstract

Porous Au nanoparticles with fine-controlled overall particle sizes have been fabricated using a kinetically controlled seed-mediated growth method. In contrast to spherical Au nanoparticles with smooth surfaces, the porous Au nanoparticles exhibit far greater size-dependent plasmonic tunability and significantly intensified local electric field enhancements exploitable for single-particle plasmon-enhanced spectroscopies. The effects of the nanoscale porosity on the far- and near-field optical properties of the nanoparticles have been investigated both experimentally by optical extinction and single-nanoparticle Raman spectroscopic measurements and theoretically through finite-difference time-domain calculations

    Similar works

    Full text

    thumbnail-image

    Available Versions