15 research outputs found

    Quantitative immunoassay for mink immunoglobulin in serum and milk

    Get PDF
    Abstract Background The significance of maternal immunoglobulin G (IgG) for the resistance against a number of infections affecting the health of young mink offspring is not known. Here, we present a validated immunoassay for quantification of mink IgG in serum and milk, using a commercially available polyclonal goat anti-ferret IgG antibody cross-reactive with mink IgG as both the catching and the detection antibody, in a sandwich format enzyme linked immunosorbent assay (ELISA). Using this ELISA, serum IgG concentrations was analyzed over time in both mothers and kits in order to establish a correlation between maternal IgG serum concentrations and those of the offspring. Results Intra-assay coefficient of variation (CV) for a serum sample ranged from 2.15 to 5.97% depending on the dilution, while the inter-assay CV ranged from 5.17 to 17.78%. In addition, the range of milk intra-assay CV was 2.71–5.92%, while the range of the inter-assay CV was 4.20–16.03%. Calibrating the ELISA with purified mink IgG (an in-house preparation purified from mink serum) the lower limit of detection was found to be 5 ng/mL for serum and 1 ng/mL for milk. Both serum and milk showed high precision and good linearity over a two-log dilution range. When comparing the serum IgG concentrations of the mink kits a clear within litter effect was seen, while the mean serum IgG concentrations of litters differed significantly between some of the litters (P = 0.0013). Mean maternal serum IgG concentrations correlated positively with the IgG serum concentration of the corresponding offspring sampled over a 3 week period (R2 = 0.63). Conclusions A calibrated and reproducible sandwich ELISA for quantifying mink IgG concentrations in both milk and serum with high analytical sensitivity was developed and validated. The results in this study corroborate previous investigations supporting the usability of the ELISA, paving the way for investigations into the importance of maternal IgG in milk and in serum for the welfare and health of the offspring

    The effect of color type on early wound healing in farmed mink (Neovison vison)

    Get PDF
    Abstract Background Individual differences of mink, including color type, are speculated to affect the course of wound healing, thereby impacting wound assessment and management on the farms, as well as the assessment of wounds in forensic cases. In this study, we examined the effect of color type on early wound healing in farmed mink. Full thickness excisional wounds (2 × 2 cm) were made on the back in 18 mink of the color types Brown, Silverblue and Blue Iris. Gross and microscopic pathology of the wounds was evaluated 2 days post-wounding together with degree of wound size reduction, presence of bacteria and blood analyses. Results Pathological examination on day 2 showed the greatest mean wound size reduction in Brown mink (11.0%) followed by Blue Iris (7.9%) and Silverblue (1.6%). Bacteria were cultured from all wounds, and predominantly Staphylococcus species were recovered in mixed or pure culture. Histopathology from day 2 wounds showed a scab overlying necrotic wound edges, which were separated from underlying vital tissue by a demarcation zone rich in polymorphonuclear leukocytes. Fibroblasts and plump endothelial cells were more numerous in the deeper tissues. Complete blood count parameters were within normal ranges in most cases, however, the mink showed mildly to markedly decreased hematocrit and six mink of the color types Silverblue and Blue Iris showed moderately elevated numbers of circulating segmented neutrophils on day 2. There was a marked increase in concentration of serum amyloid A from day 0 to day 2 in all color types. Conclusions We have described differences in early wound healing between mink of the color types Brown, Silverblue and Blue Iris by use of an experimental wound model in farmed mink. The most pronounced difference pertained to the degree of wound size reduction which was greatest in Brown mink, followed by Blue Iris and Silverblue, respectively

    High-fat but not sucrose intake is essential for induction of dyslipidemia and non-alcoholic steatohepatitis in guinea pigs

    Get PDF
    BACKGROUND: Non-alcoholic fatty liver disease (NAFLD) and dyslipidemia are closely related. Diet plays an important role in the progression of these diseases, but the role of specific dietary components is not completely understood. Therefore, we investigated the role of dietary sucrose and fat/cholesterol on the development of dyslipidemia and NAFLD. METHODS: Seventy female guinea pigs were block-randomized (based on weight) into five groups and fed a normal chow diet (control: 4 % fat), a very high-sucrose diet (vHS: 4 % fat, 25 % sucrose), a high-fat diet (HF: 20 % fat, 0.35 % cholesterol), a high-fat/high-sucrose diet (HFHS: 20 % fat, 15 % sucrose, 0.35 % cholesterol) or a high-fat/very high-sucrose diet (HFvHS: 20 % fat, 25 % sucrose, 0.35 % cholesterol) for 16 and 25 weeks. RESULTS: All three high-fat diets induced dyslipidemia with increased concentrations of plasma cholesterol (p < 0.0001), LDL-C (p < 0.0001) and VLDL-C (p < 0.05) compared to control and vHS. Contrary to this, plasma triglycerides were increased in control and vHS compared to high-fat fed animals (p < 0.01), while circulating levels of free fatty acids were even between groups. Histological evaluation of liver sections revealed non-alcoholic steatohepatitis (NASH) with progressive inflammation and bridging fibrosis in high-fat fed animals. Accordingly, hepatic triglycerides (p < 0.05) and cholesterol (p < 0.0001) was increased alongside elevated levels of alanine and aspartate aminotransferase (p < 0.01) compared to control and vHS. CONCLUSION: Collectively, our results suggest that intake of fat and cholesterol, but not sucrose, are the main factors driving the development and progression of dyslipidemia and NAFLD/NASH. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s12986-016-0110-1) contains supplementary material, which is available to authorized users

    Mink (Neovison vison) kits with pre-weaning diarrhea have elevated serum amyloid A levels and intestinal pathomorphological similarities with New Neonatal Porcine Diarrhea Syndrome

    Get PDF
    Abstract Background Pre-weaning diarrhea (PWD) is a syndrome affecting farm-raised neonatal mink kits. Apart from diarrhea it causes greasy skin exudation, dehydration, and distressed behavior and can ultimately lead to death. No specific causative agents have been identified and the syndrome is regarded as multifactorial. The aim of the present study was to investigate a possible inflammatory state in mink kits with PWD, as indicated by raised serum concentrations of the acute phase protein serum amyloid A (SAA) and by changes in intestinal pathomorphology and intestinal contents of bacteria. Samples collected from 20 diarrheic mink kits with PWD and 20 age-matched non-diarrheic control mink kits from two commercial Danish farms during the pre-weaning period (April–May) in 2016 were analyzed. Results Concentrations of SAA in serum samples from mink kits with PWD were significantly higher (up to 1000-fold) compared to non-diarrheic control mink kits. Significant features of enterocytic vacuolization, atrophy and fusion of villi in jejunum and mucosal atrophy of the colon of kits with PWD were found. Moreover, attachment of coccoid bacteria to enterocytes was more often found in kits suffering from PWD, while intra-cytoplasmic eosinophil bodies were more frequently observed in control kits. Cellular infiltrations with mononuclear and neutrophil leukocytes were not associated with disease status. Bacteria from the Staphylococcus intermedius group, such as Staphylococcus delphini, were more frequently cultivated from control mink kits, whereas Enterococcus spp. dominated in mink kits with PWD. Escherichia coli was cultivated from both control and mink kits with PWD, but with a higher frequency from mink kits with PWD. Conclusion A significant increase in circulating concentrations of SAA was found in PWD affected mink kits from 6 to 23 days old compared to controls. The histopathological changes in PWD mink kits suggest that the type of diarrhea is secretory. Attachment of coccoid bacteria, therefore, might be responsible for an enterotoxic effect causing a loss of balance in movements of ions and water leading to the vacuolization and swelling of the enterocytes. The slight to moderate infiltrations of neutrophils irrespectively of diarrheic status and the attachment of coccoid bacteria to enterocytes are comparable to observations found in piglets suffering from New Neonatal Porcine Diarrhea Syndrome. Mechanisms behind the correlation between increased SAA levels and the observed pathological intestinal features remain obscure

    Expression of selected genes isolated from whole blood, liver and obex in lambs with experimental classical scrapie and healthy controls, showing a systemic innate immune response at the clinical end-stage

    Get PDF
    Abstract Background Incubation period, disease progression, pathology and clinical presentation of classical scrapie in sheep are highly dependent on PRNP genotype, time and route of inoculation and prion strain. Our experimental model with pre-colostrum inoculation of homozygous VRQ lambs has shown to be an effective model with extensive PrPSc dissemination in lymphatic tissue and a short incubation period with severe clinical disease. Serum protein analysis has shown an elevation of acute phase proteins in the clinical stages of this experimental model, and here, we investigate changes in gene expression in whole blood, liver and brain. Results The animals in the scrapie group showed severe signs of illness 22 weeks post inoculation necessitating euthanasia at 23 weeks post inoculation. This severe clinical presentation was accompanied by changes in expression of several genes. The following genes were differentially expressed in whole blood: TLR2, TLR4, C3, IL1B, LF and SAA, in liver tissue, the following genes differentially expressed: TNF-α, SAA, HP, CP, AAT, TTR and TF, and in the brain tissue, the following genes were differentially expressed: HP, CP, ALB and TTR. Conclusions We report a strong and evident transcriptional innate immune response in the terminal stage of classical scrapie in these animals. The PRNP genotype and time of inoculation are believed to contribute to the clinical presentation, including the extensive dissemination of PrPSc throughout the lymphatic tissue
    corecore