8 research outputs found

    Topological Duality and Lattice Expansions, II: Lattice Expansions with Quasioperators

    Get PDF
    The main objective of this paper (the second of two parts) is to show that quasioperators can be dealt with smoothly in the topological duality established in Part I. A quasioperator is an operation on a lattice that either is join preserving and meet reversing in each argument or is meet preserving and join reversing in each argument. The paper discusses several common examples, including orthocomplementation on the closed subspaces of a fixed Hilbert space (sending meets to joins), modal operators auS and a- on a bounded modal lattice (preserving joins, resp. meets), residuation on a bounded residuated lattice (sending joins to meets in the first argument and meets to meets in the second). This paper introduces a refinement of the topological duality of Part I that makes explicit the topological distinction between the duals of meet homomorphisms and of join homomorphisms. As a result, quasioperators can be represented by certain continuous maps on the topological duals

    Concurrent Kleene Algebra with Tests and Branching Automata

    Get PDF
    We introduce concurrent Kleene algebra with tests (CKAT) as a combination of Kleene algebra with tests (KAT) of Kozen and Smith with concurrent Kleene algebras (CKA), introduced by Hoare, Möller, Struth and Wehrman. CKAT provides a relatively simple algebraic model for reasoning about semantics of concurrent programs. We generalize guarded strings to guarded series-parallel strings , or gsp-strings, to give a concrete language model for CKAT. Combining nondeterministic guarded automata of Kozen with branching automata of Lodaya and Weil one obtains a model for processing gsp-strings in parallel. To ensure that the model satisfies the weak exchange law (x‖y)(z‖w)≤(xz)‖(yw) of CKA, we make use of the subsumption order of Gischer on the gsp-strings. We also define deterministic branching automata and investigate their relation to (nondeterministic) branching automata. To express basic concurrent algorithms, we define concurrent deterministic flowchart schemas and relate them to branching automata and to concurrent Kleene algebras with tests

    Topological Duality and Lattice Expansions, I: A Topological Construction of Canonical Extensions

    Get PDF
    The two main objectives of this paper are (a) to prove purely topological duality theorems for semilattices and bounded lattices, and (b) to show that the topological duality from (a) provides a construction of canonical extensions of bounded lattices. In previously known dualities for semilattices and bounded lattices, the dual spaces are compact 0-dimensional spaces with additional algebraic structure. For example, semilattices are dual to 0-dimensional compact semilattices. Here we establish dual categories in which the spaces are characterized purely in topological terms, with no additional algebraic structure. Thus the results can be seen as generalizing Stone\u27s duality for distributive lattices rather than Priestley\u27s. The paper is the first of two parts. The main objective of the sequel is to establish a characterization of lattice expansions, i.e., lattices with additional operations, in the topological setting built in this paper

    Partially-Ordered Multi-Type Algebras, Display Calculi and the Category of Weakening Relations

    Get PDF
    We define partially-ordered multi-type algebras and use them as algebraic semantics for multi-type display calculi that have recently been developed for several logics, including dynamic epistemic logic [7], linear logic[10], lattice logic [11], bilattice logic [9] and semi-De Morgan logic [8]
    corecore