5,175 research outputs found

    Geological structure of the forearc basin in central Hawke’s Bay, eastern North Island

    Get PDF
    Central Hawke’s Bay lies within an extensive forearc basin in eastern North Island that developed during the Late Miocene to Pleistocene. The onshore structural elements of Hawke’s Bay can be classified into four structural domains, each reflecting differing styles and scales of deformation. These domains are from west to east, the axial range domain, the range front con¬tractional domain, the central forearc basin domain, and the eastern contractional domain. Some degree of the oblique-interaction of the Australia and Pacific plates on the subduction thrust is inferred to be partitioned across the four structural domains and to be expressed dominantly as oblique-(dextral) slip on faults bordering the axial ranges, and as short¬ening on reverse faults and folds in more eastern parts of the forearc. The axial range domain involves the eastern parts of the North Island axial ranges where there is marked oblique-slip displacement on major faults. Some dextral offest is accommodated in the range front contractional domain, although dip-slip displacement is more significant. The central forearc basin domain is comparatively undeformed with only minor reverse faulting and (fault-force driven) folding. By comparison, the ad¬jacent eastern contractional domain, which comprises an accretionary wedge, is characterised by imbricate reverse and thrust faulting and associated folding. A small degree of dextral-slip is also accommodated in this domain. The uppermost parts of the inboard margin of the accretionary wedge, particularly the part onshore, is currently undergoing gravitationally-driven collapse expressed as deep-seated landslides and normal faulting. Many folds in the basin are fault-cored, several of which have been targeted in recent years by petroleum exploration companies (e.g. Hukarere-, Whakatu-and Kereru-). Most deformation of the forearc basin fill in central Hawke’s Bay is post early Nukumaruan (2.4 Ma) and much of this has occurred since the early Pleistocene (.8 Ma). Dextral-slip on Mohaka and Ruahine Faults since the Early Pliocene is likely to be less than 0 km. Significant unconformities in the basin fill reflect early phases of development of oblique-slip faults in the axial ranges. New dextral oblique-slip faults are developing in the basin fill to the east of the main oblique-slip faults bordering the ranges

    Stratigraphy and development of the Late Miocene-Early Pleistocene Hawke’s Bay forearc basin

    Get PDF
    A Late Miocene-Early Pleistocene mixed carbonate-siliciclastic sedimentary succession about 2 500 m thick in the Hawke’s Bay forearc basin is the focus of a basin analysis. The area under investigation covers 3 500 km2 of western and central Hawke’s Bay. The stratigraphy of Hawke’s Bay Basin is characterised by dramatic vertical and lateral facies changes and significant fluxes of siliciclastic sediment through the Late Miocene and Pliocene. This project aims to better understand the character and origin of the sedimentary succession in the basin. Geological mapping has been undertaken at a scale of 1:25000, with data managed in an ARCINFO geodatabase, following the database model employed in the IGNS QMap programme. Along the western margin of the basin there is progressive southward onlap of late Cenozoic strata on to basement. The oldest units are of Late Miocene (Tongaporutuan) age and the youngest onlap units are of latest Pliocene (Nukumaruan) age. Geological mapping of the basin fill places constraints on the magnitude (about 10 km) and timing (Pleistocene) of most of the offset on the North Island Shear Belt. Lithofacies have been described and interpreted representing fluvial, estuarine, shoreface and inner- to outer-shelf environments. Conglomerate facies are representative of sediment-saturated prograding fluvial braidplains and river deltas. These units are dominated by greywacke gravels and record the erosion of the Kaweka-Ahimanawa Ranges. Sandstone facies typically comprise very well sorted, clean non-cemented units of 10-50 m thickness that accumulated in innershelf environments. Siltstone facies probably accumulated in relatively quiet, middle- to outer-shelf water depths, and comprise well-sorted, firm non-cemented units with occasional tephra interbeds. Limestone facies represent examples of continent-attached cool-water carbonate systems that developed in response to strong tidal currents and a high nutrient flux during the Pliocene. These facies are examples of mixed siliciclastic-bioclastic sedimentary systems. Of these facies the widespread distribution and thickness of sandstone and limestone units present the most potential for hydrocarbon reservoirs. Similarly, the distribution of siltstone and mudstone beds provides adequate seal rocks. Mangapanian limestone facies have already been targeted as potential petroleum reservoirs (e.g. Kereru-1). Geological mapping suggests that potential hydrocarbon reservoir and seal rocks occur extensively in the subsurface

    Systematic lithostratigraphy of the Neogene succession exposed in central parts of Hawke’s Bay Basin, eastern North Island, New Zealand

    Get PDF
    This report presents a systematic lithostratigraphy for the Neogene (Miocene–Recent) sedimentary succession in central parts of Hawke’s Bay Basin in eastern North Island, New Zealand. It has been built up chiefly from strata exposed in outcrop, but petroleum exploration drill hole data have also been incorporated to produce this stratigraphic synthesis. Most of the strata exposed in this part of the basin are of Late Miocene (Tongaporutuan, local New Zealand Stage) to Recent age, and the majority of this report focuses on these starta, with brief description of Middle and Early Miocene formations. A companion PR report (Kamp et al. 2007) contains stratigraphic columns for sections through the Neogene succession described in this report

    Late Miocene – Early Pleistocene paleogeography of the onshore central Hawke’s Bay sector of the forearc basin, eastern North Island, New Zealand, and some implications for hydrocarbon prospectivity

    Get PDF
    The timing of trap formation in relation to the timing of source rock burial and maturation are important considerations in evaluating the hydrocarbon prospectivity of onshore parts of the forearc basin in central Hawke’s Bay. We describe here aspects of the Late Miocene to Early Pleistocene paleogeography for the area based on detailed field mapping and lithofacies analysis, to help constrain petroleum systems evaluations. Key conclusions are: • Most deformation of the forearc basin fill appears to be relatively young (i.e. post-2 Ma). This deformation has occurred after a major phase of Late Miocene to Pliocene sediment accumulation, and is particularly significant along the northwestern and southeastern margins of the basin. • The axis of the forearc basin in central Hawke’s Bay appears to have undergone little structural deformation. Gentle force and reverse faults in the subsurface may be suitable traps. • The most widespread potential reservoir beds are Miocene sandstone beds. • Potential hydrocarbon source rocks are mostly absent from western parts of the basin due to significant Neogene uplift and erosion. They are, however, probably still widely preserved beneath central parts of the basin where uplift and erosion have been much less pronounced. • Miocene structures within the axis of the basin, buried by the Late Miocene to Pleistocene siliciclastic succession, are likely exploration targets. The forearc basin has been substantially inverted along its western side since the latest Pliocene, resulting in erosion of older sediments, including potential source rocks, down to basement in ranges flanking its western side. The stratigraphy along the eastern margin of the forearc basin, and particularly the outcrop pattern of westward-younging Plio-Pleistocene limestones, records the development of faulting and folding associated with the elevation and growth of the inboard part of the accretionary wedge. Parts of the forearc basin succession have become involved in the accretionary wedge, which has migrated westward through time. Uplift of the inboard margin of the accretionary wedge since the latest Miocene helped to cause an interior seaway to develop to the west during the Pliocene. Distinctive coarse-grained bioclastic carbonate sediments of the Te Aute lithofacies were deposited along both margins of the seaway, which was most extensive during the Late Pliocene (Mangapanian). Although significant volumes of siliciclastic sediment were supplied to the basin during the Pliocene, strong tidal currents periodically swept much of these sediments northeastward. Tidal connections existed during the Pliocene into Wanganui Basin in the vicinity of Kuripapango and Manawatu Gorge. By the latest Pliocene (lower Nukumaruan), the interior seaway became closed in the south with uplift of the Mount Bruce block in northern Wairarapa. Potential reservoirs within the map area include both shelf and redeposited sandstone beds in the Miocene to Early Pliocene Tolaga Group. Thick, coarse-grained, variably cemented Plio-Pleistocene limestone lithofacies in the Mangaheia Group are widespread along the margins of the basin, and have been the targets for several past exploration programmes. However, drilling has shown that the attractiveness of the Pliocene limestone facies as reservoir beds is limited because they quickly pass laterally into siliciclastic mudstone away from the margins of the basin

    Hidden isometry of "T-duality without isometry"

    Full text link
    We study the T-dualisability criteria of Chatzistavrakidis, Deser and Jonke [3] who recently used Lie algebroid gauge theories to obtain sigma models exhibiting a "T-duality without isometry". We point out that those T-dualisability criteria are not written invariantly in [3] and depend on the choice of the algebroid framing. We then show that there always exists an isometric framing for which the Lie algebroid gauging boils down to standard Yang-Mills gauging. The "T-duality without isometry" of Chatzistavrakidis, Deser and Jonke is therefore nothing but traditional isometric non-Abelian T-duality in disguise.Comment: 15 page

    Mars Ascent Vehicle - Payload?, Spacecraft?, Launch Vehicle? - A Systems Approach to MAV

    Get PDF
    Significant effort has been expended over the past few years in order to examine propulsion technologies for an eventual robotic Mars Ascent Vehicle (MAV). The recent emphasis on studies for an overall sample return campaign, and specifically the Sample Return Lander (SRL) includes the full slate of systems required to implement a MAV. Depending on your point of view, the MAV is a major SRL flight system payload, a Mars Surface Spacecraft, or a Launch Vehicle. We will examine the MAV from these three perspectives in order to tease out the key architectural trades required to be completed prior to the start of a project Phase A activity
    corecore