10 research outputs found

    The Molecular Accretion Flow in G10.6-0.4

    Full text link
    We have observed the ultracompact HII region G10.6-0.4 with the VLA in 23 GHz continuum and the NH3(3,3) inversion line. By analyzing the optical depth of the line as well as the kinematics, we have detected a flattened, rotating, molecular accretion flow. We detect the fact that the highest column density gas is more flattened, that is, distributed more narrowly, than the lower column density gas, and that there is some inclination of the rotation axis. The rotation is sub-Keplerian, and the molecular gas is not in a rotationally supported disk. We do not find a single massive (proto)star forming in a scaled up version of low mass star formation. Instead, our observations suggest a different mode of clustered massive star formation, in which the accretion flow flattens but does not form an accretion disk. Also in this mode of star formation the central object can be a group of massive stars rather than a single massive star.Comment: 20 pages, 6 figures Accepted for publication in the Astrophysical Journa

    Experimental Observation Of Correlated Magnetic Reconnection And Alfvénic Ion Jets

    Get PDF
    Correlations between magnetic reconnection and energetic ion flow events have been measured with merging force free spheromaks at the Swarthmore Spheromak Experiment. The reconnection layer is measured with a linear probe array and ion flow is directly measured with a retarding grid energy analyzer. Flow has been measured both in the plane of the reconnection layer and out of the plane. The most energetic events occur in the reconnection plane immediately after formation as the spheromaks dynamically merge. The outflow velocity is nearly Alfvenic. As the spheromaks form equilibria and decay, the flow is substantially reduced

    Spherical Infall in G10.6-0.4: Accretion Through an Ultracompact HII Region

    Full text link
    We present high resolution (0.''12 x 0.''079) observations of the ultracompact HII region G10.6-0.4 in 23 GHz radio continuum and the NH3(3,3) line. Our data show that the infall in the molecular material is largely spherical, and does not flatten into a molecular disk at radii as small as 0.03 pc. The spherical infall in the molecular gas matches in location and velocity the infall seen in the ionized gas. We use a non-detection to place a stringent upper limit on the mass of an expanding molecular shell associated with pressure driven expansion of the HII region. These data support a scenario in which the molecular accretion flow passes through an ionization front and becomes an ionized accretion flow onto one or more main sequence stars, not the classical pressure-driven expansion scenario. In the continuum emission we see evidence for externally ionized clumps of molecular gas, and cavities evacuated by an outflow from the central source.Comment: Accepted for publication in Astrophysical Journal Letter
    corecore