534 research outputs found

    Evaluation of the optical conductivity tensor in terms of contour integrations

    Full text link
    For the case of finite life-time broadening the standard Kubo-formula for the optical conductivity tensor is rederived in terms of Green's functions by using contour integrations, whereby finite temperatures are accounted for by using the Fermi-Dirac distribution function. For zero life-time broadening, the present formalism is related to expressions well-known in the literature. Numerical aspects of how to calculate the corresponding contour integrals are also outlined.Comment: 8 pages, Latex + 2 figure (Encapsulated Postscript

    Real quadratic fields with class numbers divisible by n

    Get PDF
    In this note I prove that the class number of Q([radical sign][Delta](x)) is infinitely often divisible by n, where [Delta](x) = x2n + 4.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/33975/1/0000247.pd

    Imaging Spin Reorientation Transitions in Consecutive Atomic Co layers

    Full text link
    By means of spin-polarized low-energy electron microscopy (SPLEEM) we show that the magnetic easy-axis of one to three atomic-layer thick cobalt films on ruthenium crystals changes its orientation twice during deposition: one-monolayer and three-monolayer thick films are magnetized in-plane, while two-monolayer films are magnetized out-of-plane, with a Curie temperature well above room temperature. Fully-relativistic calculations based on the Screened Korringa-Kohn-Rostoker (SKKR) method demonstrate that only for two-monolayer cobalt films the interplay between strain, surface and interface effects leads to perpendicular magnetization.Comment: 5 pages, 4 figures. Presented at the 2005 ECOSS conference in Berlin, and at the 2005 Fall meeting of the MRS. Accepted for publication at Phys. Rev. Lett., after minor change

    Ammonium bis(salicylaldehyde thiosemicarbazonato)ferrate(III), a supramolecular material containing low-spin FeIII

    Get PDF
    The synthesis and crystal structure (100 K) of the title com­pound, ammonium bis­[salicyl­aldehyde thio­semi­car­ba­zon­ato(2−)-κ3O,N1,S]iron(III), NH4[Fe(C8H7N3OS)2], is reported. The asymmetric unit consists of an octa­hedral [FeIII(thsa)2]− fragment, where thsa2− is salicyl­aldehyde thio­semi­car­ba­zon­ate(2−), and an NH4+ cation. Each thsa2− ligand binds via the thiol­ate S, the imine N and the phenolate O donor atoms, resulting in an FeIIIS2N2O2 chromophore. The ligands are orientated in two perpendicular planes, with the O and S atoms in cis and the N atoms in trans positions. The FeIII ion is in the low-spin state at 100 K. The crystal structure belongs to a category I order–disorder (OD) family. It is a polytype of a maximum degree of order (MDO). Fragments of the second MDO polytype lead to systematic twinning by pseudomerohedry

    Comparison of metabolic and functional parameters using cardiac 18F-FDG-PET in early to mid-adulthood male and female mice

    Get PDF
    BACKGROUND In this descriptive study of male and female mice at different weeks of age, we use serial non-invasive cardiac 18F-FDG-PET scans to follow up on metabolic alterations, heart function parameters, and the ECG of both sexes in early to mid-adulthood. METHODS ECG-gated 18F-FDG-PET scans were performed in mice on 10, 14, and 18~weeks of age, using a dedicated small-animal PET scanner. The percentage of the injected activity per gram (%IA/g) in the heart, left ventricular metabolic volume (LVMV), myocardial viability and left ventricular function parameters: end-diastolic (EDV), end-systolic (ESV), stroke volume (SV), and the ejection fraction (EF%) were estimated. RESULTS Compared to their age-matched female counterpart, male mice showed a constant increase in LVMV and ventricular volume during the follow-up. In contrast, female mice remain stable after ten weeks of age. Furthermore, male mice showed lower heart rates, positive correlation with cardiac %IA/g, and negative correlation with LVMV. CONCLUSION In this study of serial cardiac PET scans, we provide insight for basic murine research models, showing that mice gender and age show distinct cardiac metabolisms. These physiologic alterations need to be considered when planning in vivo injury models to avoid potential pitfalls

    Metastable States in High Order Short-Range Spin Glasses

    Full text link
    The mean number of metastable states in higher order short-range spin glasses is estimated analytically using a variational method introduced by Tanaka and Edwards for very large coordination numbers. For lattices with small connectivities, numerical simulations do not show any significant dependence on the relative positions of the interacting spins on the lattice, indicating thus that these systems can be described by a few macroscopic parameters. As an extremely anisotropic model we consider the low autocorrelated binary spin model and we show through numerical simulations that its landscape has an exceptionally large number of local optima

    Imaging protoplanets: observing transition disks with non-redundant masking

    Get PDF
    Transition disks, protoplanetary disks with inner clearings, are promising objects in which to directly image forming planets. The high contrast imaging technique of non-redundant masking is well posed to detect planetary mass companions at several to tens of AU in nearby transition disks. We present non-redundant masking observations of the T Cha and LkCa 15 transition disks, both of which host posited sub-stellar mass companions. However, due to a loss of information intrinsic to the technique, observations of extended sources (e.g. scattered light from disks) can be misinterpreted as moving companions. We discuss tests to distinguish between these two scenarios, with applications to the T Cha and LkCa 15 observations. We argue that a static, forward-scattering disk can explain the T Cha data, while LkCa 15 is best explained by multiple orbiting companions.Comment: SPIE conference proceedin

    Cardiac 18F-FDG Positron Emission Tomography: An Accurate Tool to Monitor In vivo Metabolic and Functional Alterations in Murine Myocardial Infarction

    Get PDF
    Cardiac monitoring after murine myocardial infarction, using serial non-invasive cardiac 18F-FDG positron emissions tomography (PET) represents a suitable and accurate tool for in vivo studies. Cardiac PET imaging enables tracking metabolic alterations, heart function parameters and provides correlations of the infarct size to histology. ECG-gated 18F-FDG PET scans using a dedicated small-animal PET scanner were performed in mice at baseline, 3, 14, and 30 days after myocardial infarct (MI) by permanent ligation of the left anterior descending (LAD) artery. The percentage of the injected dose per gram (%ID/g) in the heart, left ventricular metabolic volume (LVMV), myocardial defect, and left ventricular function parameters: end-diastolic volume (EDV), end-systolic volume (ESV), stroke volume (SV), and the ejection fraction (EF%) were estimated. PET assessment of the defect positively correlates with post-infarct histology at 3 and 30 days. Infarcted murine hearts show an immediate decrease in LVMV and an increase in %ID/g early after infarction, diminishing in the remodeling process. This study of serial cardiac PET scans provides insight for murine myocardial infarction models by novel infarct surrogate parameters. It depicts that serial PET imaging is a valid, accurate, and multimodal non-invasive assessment
    corecore