Real Quadratic Fields with Class Numbers Divisible by n

P. J. Weinberger
Department of Mathematics, University of Michigan, Ann Arbor, Michigan 48104 Communicated by D. J. Lewis

Received April 20, 1971

In this note I prove that the class number of $Q(\sqrt{\Delta}(x))$ is infinitely often divisible by n, where $\Delta(x)=x^{2 n}+4$.

The goal of this note is the following theorem.
Theorem 1. For all positive integers n, there are infinitely many real quadratic fields with class numbers divisible by n.

The corresponding theorem for complex quadratic fields was originally proved by Nagell [1].

Let $\Delta=\Delta(x)=x^{2 n}+4$. Theorem 1 follows immediately from Theorem 2 and Lemma 1. The field of rationals will be denoted with Q.

Theorem 2. For infinitely many x, the class number of $Q(\sqrt{\bar{\Delta}})$ is divisible by n, if n is odd and by $n / 2$, if n is even.

Lemma 1. For square-free $d, Q(\sqrt{d})=Q(\sqrt{\Delta})$ for at most finitely many values of x.

Proof. The fields are the same only if there is an integer y such that

$$
\Delta=x^{2 n}+4=d y^{2}
$$

which has only a finite number of solutions (x, y) [2, p. 265].
The proof of Theorem 2 requires two simple lemmas, and knowledge of the fundamental unit of $Q(\sqrt{\Delta})$.

Lemma 2. For any odd e there are infinitely many primes p for which $T^{e}-4$ is irreducible in $\mathbf{F}_{p}[T]$.

Proof. $T^{e}-4$ is irreducible over Q. Let $\eta_{1}, \ldots, \eta_{e}$ be its roots, $\eta_{i}=\rho^{i} 4^{1 / e}$ where ρ is a primitive e th root of one. The Galois group of the splitting field consists of the automorphisms determined by

$$
\sigma_{a b}\left(\eta_{i}\right)=\rho^{a i+b} 4^{1 / e} \quad \text { with } \quad 0 \leqslant a, \quad b<e, \quad(a, e)=1
$$

σ_{11} is a cyclic permutation of order e of the roots. By the Frobenius density theorem there are infinitely many primes p for which the splitting field of $T^{e}-4$ over \mathbf{F}_{p} has its Galois group generated by σ_{11}, and so is of degree e. For these $p, T^{e}-4$ is irreducible.
Q.E.D.

Lemma 3. For integers r, s let $c_{i}(r, s)=\rho_{1}{ }^{i}+\rho_{2}{ }^{i}$, where ρ_{1} and ρ_{2} are the roots of $T^{2}-r T-s=0$.
(a) There are integers f_{v} such that

$$
\begin{equation*}
c_{i}(r, s)=\sum_{v=0}^{i / 2} f_{\nu} r^{i-2 v s^{v}} \tag{1}
\end{equation*}
$$

When i is odd $f_{(i-1) / 2}=i, f_{0}=1$.
(b) If $r, s>1$, and $j>1$, then $c_{j}(r, s)>r^{j}$.

Proof. The binomial theorem shows that the coefficients in (1) are rational, so that $c_{i}(r, s)$ is a polynomial in r and s with rational coefficients. Part (a) of the lemma now follows from the fact that $c_{i}(r, s)=r c_{i-1}(r, s)+s c_{i-2}(r, s)$ with $c_{0}(r, s)=2$ and $c_{1}(r, s)=r$.

The second part follows immediately from these facts.
Lemma 4. If $x>n$ is prime, and $Q(\sqrt{\Delta}) \neq Q(\sqrt{5})$, then the fundamental unit of $Q(\sqrt{\Delta})$ is

$$
\alpha=\left(x^{n}+\sqrt{\Delta}\right) / 2
$$

Note that Lemma 1 now implies that the fundamental unit is α for all sufficiently large prime x.

Proof. $N(\alpha)=-1$ and $\alpha>1$. Let the fundamental unit be $\epsilon>1$, so that for some odd $j>0, \alpha=\epsilon^{j}$. Since $\epsilon>1$ implies $r=\operatorname{Tr}(\epsilon)>0$, the minimal polynomial of ϵ is

$$
T^{2}-r T-1, \quad r>0
$$

Then

$$
x^{n}=\operatorname{Tr}(\alpha)=\operatorname{Tr}\left(\epsilon^{j}\right)=\rho_{1}^{j}+\rho_{2}{ }^{j}=c_{j}(r, 1),
$$

so

$$
\begin{equation*}
c_{j}(r, 1)-x^{n}=0 . \tag{2}
\end{equation*}
$$

Now from (1) $r \mid c_{j}(r, 1)$, so $r \mid x^{n}$. If $r=1$, then $\epsilon=(1+\sqrt{5}) / 2$, which is excluded by the hypotheses. Hence, since x is prime, $r=x^{k}$ with $1 \leqslant k \leqslant n$. By Lemma 3(b),

$$
x^{n}=c_{j}(r, 1) \geqslant r^{j}=x^{j k}
$$

so $n \geqslant j k$. Since $x>n$ and prime, it follows that $(j, x)=1$. Then, since j is odd, Lemma 3(a) gives

$$
c_{j}(r, 1) / r \equiv j \quad(\bmod x)
$$

so $\left(c_{j}(r, 1) / r, x\right)=1$, so that, by (2), $x^{n-k}=1$, so $n=k$, but then $j=1$ and $\epsilon=\alpha$.
Q.E.D.

Assume that x satisfies the hypotheses of Lemma 4. Let

$$
\mathfrak{a}=\left(x^{2}, 2+\sqrt{\Delta}\right)
$$

Since x is odd, and prime to Δ, in the order of discriminant Δ the norm of \mathfrak{a} is x^{2}. Since x is prime to Δ, there is a one-to-one correspondence between residue classes modulo \mathfrak{a} in the order of discriminant Δ and residue classes modulo \mathfrak{a} in the maximal order of $Q(\sqrt{\triangle})$. Hence,

$$
N(\mathfrak{a})=x^{2} .
$$

This may also be seen by actually calculating an integral basis for \mathfrak{a}. Now

$$
\begin{aligned}
\mathfrak{a}^{n} & =\left(x^{2 n}, x^{2 n-2}(2+\sqrt{\Delta}), \ldots,(2+\sqrt{\Delta})^{n}\right) \\
& =(2+\sqrt{\Delta})\left(\sqrt{\Delta}-2, x^{2 n-2}, \ldots,(2+\sqrt{\Delta})^{n-1}\right)
\end{aligned}
$$

so $\mathfrak{a}^{n} \subseteq(2+\sqrt{\Delta})$, while $N\left(\mathfrak{a}^{n}\right)=x^{2 n}=N((2+\sqrt{\bar{U}}))$ so that

$$
\mathbf{a}^{n}=(2+\sqrt{\Delta})
$$

The proof of Theorem 2 is concluded by showing that the order of \mathfrak{a} in the ideal class group of $Q(\sqrt{\bar{\Delta}})$ is, for infinitely many x, n when n is odd, and $n / 2$ when n is even. Suppose not, so that $\mathfrak{a}^{m}=(\beta)$ with $n=m k$, where k is odd or 4 . Then, since α is the fundamental unit, for some j

$$
\begin{equation*}
\beta^{k}= \pm(2+\sqrt{\Delta})\left(\frac{x^{n}+\sqrt{\Delta}}{2}\right)^{j} \tag{3}
\end{equation*}
$$

The value of j is determined only $\bmod k$.

If $k=4$, then $\beta^{k}>0$, so the right side of (3) must be positive. Then $N\left(\beta^{4}\right)=(-1)^{j+1} x^{2 n}$, so j is one or minus one, and $N(\beta)= \pm x^{n / 2}$. Therefore, with $\sigma-(-1)^{(j-1) / 2}$,

$$
\beta^{4}=\left(x^{2 n}+2 \sigma x^{n}+4+\left(2+\sigma x^{n}\right) \sqrt{\Delta}\right) / 2
$$

which is not rational, so the minimal polynomial of β is $T^{2}-r T \pm x^{n / 2}$ and

$$
\begin{equation*}
x^{2 n}+2 \sigma x^{n}+4=\operatorname{Tr}\left(\beta^{4}\right)=c_{4}\left(r, \pm x^{n / 2}\right)=r^{4} \pm 4 x^{n / 2} r^{2}+2 x^{n} \tag{4}
\end{equation*}
$$

If $j=1$, this implies

$$
r^{2}=\left(x^{n / 2} \pm 1\right)^{2}+1
$$

which has no solutions with $x>1$. If $j=-1$ (4) implies that

$$
\left(r^{2} \pm 2 x^{n / 2}\right)^{2}=\left(x^{n}-2\right)^{2}+4 x^{n}
$$

which is impossible $\bmod 8$.
If k is odd, a possible minus sign in (3) can be absorbed into β. Define

$$
\frac{Y_{i}+Z_{i} \sqrt{\Delta}}{2}=(2+\sqrt{\Delta})\left(\frac{x^{n}+\sqrt{\Delta}}{2}\right)^{i}, \quad i=0,1, \ldots
$$

Then $Y_{0}=4$ and $Z_{0}=2$, so a trivial induction shows that

$$
Y_{i} \equiv 4\left(\bmod x^{n}\right), \quad Z_{i} \equiv 2\left(\bmod x^{n}\right), \quad i=0,1, \ldots .
$$

Since $Z_{j} \neq 0, \beta$ is irrational. Therefore, the minimal polynomial of β is $T^{2}-r T \pm x^{2 n / k}$, so

$$
Y_{j}=\operatorname{Tr}\left(\beta^{k}\right)=c_{k}\left(r, \pm x^{2 n / k}\right)
$$

and by (1),

$$
\begin{equation*}
r^{k} \equiv Y_{j} \equiv 4 \quad(\bmod x) \tag{5}
\end{equation*}
$$

Now let e be the largest odd divisor of n, and x be one of the infinite set of primes given in Lemma 2. Then (5) has no solution, for if $r_{0}{ }^{k} \equiv 4(\bmod x)$, then

$$
T^{k}-4 \equiv\left(T-r_{0}\right) f(T) \quad(\bmod x)
$$

so

$$
T^{e}-4 \equiv\left(T^{e / k}-r_{0}\right) f\left(T^{e / k}\right) \quad(\bmod x)
$$

which contradicts Lemma 2.
Q.E.D.

Acknowledgment

During the preparation of this paper the author learned of recent work by Y. Yamamoto [Osaka Math. J. 7 (1970), 57-76] in which Theorem 1 is proved in a different manner and with a different set of discriminants. I also wish to thank A. Schinzel for his helpful comments on the exposition of the proof.

References

1. T. Nagell, Abh. Math. Seminar Univ. Hamburg 1 (1922), 140-150.
2. L. J. Mordell, "Diophantine Equations," Academic Press, New York, 1969.
