63 research outputs found

    Cardiovascular disease risk in the offspring of diabetic women: the impact of the intrauterine environment

    Get PDF
    The incidence of gestational diabetes is increasing worldwide, exposing large numbers of infants to hyperglycaemia whilst in utero. This exposure may have a long-term negative impact on the cardiovascular health of the offspring. Novel methods to assess cardiovascular status in the neonatal period are now available—including measuring arterial intima-media thickness and retinal photography. These measures will allow researchers to assess the relative impact of intrauterine exposures, distinguishing these from genetic or postnatal environmental factors. Understanding the long-term impact of the intrauterine environment should allow the development of more effective health policy and interventions to decrease the future burden of cardiovascular disease. Initiating disease prevention aimed at the developing fetus during the antenatal period may optimise community health outcomes

    Dietary Fiber and Bacterial SCFA Enhance Oral Tolerance and Protect against Food Allergy through Diverse Cellular Pathways

    Get PDF
    The incidence of food allergies in western countries has increased dramatically in recent decades. Tolerance to food antigens relies on mucosal CD103+ dendritic cells (DCs), which promote differentiation of regulatory T (Treg) cells. We show that high-fiber feeding in mice improved oral tolerance and protected from food allergy. High-fiber feeding reshaped gut microbial ecology and increased the release of short-chain fatty acids (SCFAs), particularly acetate and butyrate. High-fiber feeding enhanced oral tolerance and protected against food allergy by enhancing retinal dehydrogenase activity in CD103+ DC. This protection depended on vitamin A in the diet. This feeding regimen also boosted IgA production and enhanced T follicular helper and mucosal germinal center responses. Mice lacking GPR43 or GPR109A, receptors for SCFAs, showed exacerbated food allergy and fewer CD103+ DCs. Dietary elements, including fiber and vitamin A, therefore regulate numerous protective pathways in the gastrointestinal tract, necessary for immune non-responsiveness to food antigens

    The ontogeny of naïve and regulatory CD4(+) T-cell subsets during the first postnatal year: a cohort study

    Get PDF
    As there is limited knowledge regarding the longitudinal development and early ontogeny of naïve and regulatory CD4(+) T-cell subsets during the first postnatal year, we sought to evaluate the changes in proportion of naïve (thymic and central) and regulatory (resting and activated) CD4(+) T-cell populations during the first postnatal year. Blood samples were collected and analyzed at birth, 6 and 12 months of age from a population-derived sample of 130 infants. The proportion of naïve and regulatory CD4(+) T-cell populations was determined by flow cytometry, and the thymic and central naïve populations were sorted and their phenotype confirmed by relative expression of T cell-receptor excision circle DNA (TREC). At birth, the majority (94%) of CD4(+) T cells were naïve (CD45RA(+)), and of these, ~80% had a thymic naïve phenotype (CD31(+) and high TREC), with the remainder already central naïve cells (CD31(-) and low TREC). During the first year of life, the naïve CD4(+) T cells retained an overall thymic phenotype but decreased steadily. From birth to 6 months of age, the proportion of both resting naïve T regulatory cells (rTreg; CD4(+)CD45RA(+)FoxP3(+)) and activated Treg (aTreg, CD4(+)CD45RA(-)FoxP3(high)) increased markedly. The ratio of thymic to central naïve CD4(+) T cells was lower in males throughout the first postnatal year indicating early sexual dimorphism in immune development. This longitudinal study defines proportions of CD4(+) T-cell populations during the first year of postnatal life that provide a better understanding of normal immune development

    VITALITY trial: protocol for a randomised controlled trial to establish the role of postnatal vitamin D supplementation in infant immune health

    Get PDF
    Introduction Postnatal vitamin D supplementation may be associated with a reduction in IgE-mediated food allergy, lower respiratory tract infections and improved bone health. Countries in the Northern hemisphere recommend universal infant vitamin D supplementation to optimise early vitamin D levels, despite the absence of large trials proving safety or efficacy for any disease outcome. With the aim of determining the clinical and cost-effectiveness of daily vitamin D supplementation in breastfed infants from age 6–8 weeks to 12 months of age, we have started a double-blind, randomised, placebo-controlled trial of daily 400 IU vitamin D supplementation during the first year of life, VITALITY. Methods nd analysis Infants (n=3012) who are fully breastfed and not receiving vitamin D supplementation will be recruited at the time of their first immunisation, from council-led immunisation clinics throughout metropolitan Melbourne, Australia. The primary outcome is challenge-proven food allergy at 12 months of age. Secondary outcomes are food sensitisation (positive skin prick test), number of lower respiratory infections (through hospital linkage), moderately-severe and persistent eczema (by history and examination) and vitamin D deficiency (serum vitamin D <50 nmol/L) at age 12 months. The trial is underway and the first 130 participants have been recruited

    Population-based plasma lipidomics reveals developmental changes in metabolism and signatures of obesity risk : a mother-offspring cohort study

    Get PDF
    Publisher Copyright: © 2022, The Author(s).Background: Lipids play a vital role in health and disease, but changes to their circulating levels and the link with obesity remain poorly characterized in expecting mothers and their offspring in early childhood. Methods: LC-MS/MS-based quantitation of 480 lipid species was performed on 2491 plasma samples collected at 4 time points in the mother-offspring Asian cohort GUSTO (Growing Up in Singapore Towards healthy Outcomes). These 4 time points constituted samples collected from mothers at 26–28 weeks of gestation (n=752) and 4–5 years postpartum (n=650), and their offspring at birth (n=751) and 6 years of age (n=338). Linear regression models were used to identify the pregnancy and developmental age-specific variations in the plasma lipidomic profiles, and their association with obesity risk. An independent birth cohort (n=1935), the Barwon Infant Study (BIS), comprising mother-offspring dyads of Caucasian origin was used for validation. Results: Levels of 36% of the profiled lipids were significantly higher (absolute fold change > 1.5 and Padj < 0.05) in antenatal maternal circulation as compared to the postnatal phase, with phosphatidylethanolamine levels changing the most. Compared to antenatal maternal lipids, cord blood showed lower concentrations of most lipid species (79%) except lysophospholipids and acylcarnitines. Changes in lipid concentrations from birth to 6 years of age were much higher in magnitude (log2FC=−2.10 to 6.25) than the changes observed between a 6-year-old child and an adult (postnatal mother) (log2FC=−0.68 to 1.18). Associations of cord blood lipidomic profiles with birth weight displayed distinct trends compared to the lipidomic profiles associated with child BMI at 6 years. Comparison of the results between the child and adult BMI identified similarities in association with consistent trends (R2=0.75). However, large number of lipids were associated with BMI in adults (67%) compared to the children (29%). Pre-pregnancy BMI was specifically associated with decrease in the levels of phospholipids, sphingomyelin, and several triacylglycerol species in pregnancy. Conclusions: In summary, our study provides a detailed landscape of the in utero lipid environment provided by the gestating mother to the growing fetus, and the magnitude of changes in plasma lipidomic profiles from birth to early childhood. We identified the effects of adiposity on the circulating lipid levels in pregnant and non-pregnant women as well as offspring at birth and at 6 years of age. Additionally, the pediatric vs maternal overlap of the circulating lipid phenotype of obesity risk provides intergenerational insights and early opportunities to track and intervene the onset of metabolic adversities. Clinical trial registration: This birth cohort is a prospective observational study, which was registered on 1 July 2010 under the identifier NCT01174875.Peer reviewe

    Advance Access published March 30

    Get PDF
    Summary The modern environment is associated with an increasing burden of non-communicable diseases (NCDs). Mounting evidence implicates environmental exposures, experienced early in life (including in utero), in the aetiology of many NCDs, though the cellular/molecular mechanism(s) underlying this elevated risk across the life course remain unclear. Epigenetic variation has emerged as a candidate mediator of such effects. The Barwon Infant Study (BIS) is a population-derived birth cohort study (n ¼ 1074 infants) with antenatal recruitment, conducted in the south-east of Australia (Victoria). BIS has been designed to facilitate a detailed mechanistic investigation of development within an epidemiological framework. The broad objectives are to investigate the role of specific environmental factors, gut microbiota and epigenetic variation in early-life development, and subsequent immune, allergic, cardiovascular, respiratory and neurodevelopmental outcomes. Participants have been reviewed at birth and at 1, 6, 9 and 12 months, with 2-and 4-year reviews under way. Biological samples and measures include: maternal blood, faeces and urine during pregnancy; infant urine, faeces and blood at regular intervals during the first 4 years; lung function at 1 month and 4 years; cardiovascular assessment at 1 month and 4 years; skin-prick allergy testing and food challenge at 1 year; and neurodevelopmental assessment at 9 months, 2 and 4 years. Data access enquiries can be made at [www.barwoninfantstudy.org.au] or via [[email protected]]

    Influence of fecal collection conditions and 16S rRNA gene sequencing at two centers on human gut microbiota analysis

    Full text link
    To optimise fecal sampling for reproducible analysis of the gut microbiome, we compared different methods of sample collection and sequencing of 16S rRNA genes at two centers. Samples collected from six individuals on three consecutive days were placed in commercial collection tubes (OMNIgeneGut OMR-200) or in sterile screw-top tubes in a home fridge or home freezer for 6-24 h, before transfer and storage at-80 &deg;C. Replicate samples were shipped to centers in Australia and the USA for DNA extraction and sequencing by their respective PCR protocols, and analysed with the same bioinformatic pipeline. Variation in gut microbiome was dominated by differences between individuals. Minor differences in the abundance of taxa were found between collection-processing methods and day of collection, and between the two centers. We conclude that collection with storage and transport at 4 &deg;C within 24 h is adequate for 16S rRNA analysis of the gut microbiome. Other factors including differences in PCR and sequencing methods account for relatively minor variation compared to differences between individuals

    The maternal microbiome during pregnancy and allergic disease in the offspring

    Get PDF
    There is substantial epidemiological and mechanistic evidence that the increase in allergic disease and asthma in many parts of the world in part relates to changes in microbial exposures and diet acting via the composition and metabolic products of the intestinal microbiome. The majority of research in this field has focused on the gut microbiome during infancy, but it is increasingly clear that the maternal microbiome during pregnancy also has a key role in preventing an allergy-prone immune phenotype in the offspring. The mechanisms by which the maternal microbiome influences the developing fetal immune system include alignment between the maternal and infant regulatory immune status and transplacental passage of microbial metabolites and IgG. Interplay between microbial stimulatory factors such as lipopolysaccharides and regulatory factors such as short-chain fatty acids may also influence on fetal immune development. However, our understanding of these pathways is at an early stage and further mechanistic studies are needed. There are also no data from human studies relating the composition and metabolic activity of the maternal microbiome during pregnancy to the offspring's immune status at birth and risk of allergic disease. Improved knowledge of these pathways may inform novel strategies for tackling the increase in allergic disorders in the modern world
    corecore