22 research outputs found

    Semiautomatic Assessment of the Terminal Ileum and Colon in Patients with Crohn Disease Using MRI (the VIGOR++ Project)

    Get PDF
    Rationale and Objectives: The objective of this study was to develop and validate a predictive magnetic resonance imaging (MRI) activity score for ileocolonic Crohn disease activity based on both subjective and semiautomatic MRI features. Materials and Methods: An MRI activity score (the “virtual gastrointestinal tract [VIGOR]” score) was developed from 27 validated magnetic resonance enterography datasets, including subjective radiologist observation of mural T2 signal and semiautomatic measurements of bowel wall thickness, excess volume, and dynamic contrast enhancement (initial slope of increase). A second subjective score was developed based on only radiologist observations. For validation, two observers applied both scores and three existing scores to a prospective dataset of 106 patients (59 women, median age 33) with known Crohn disease, using the endoscopic Crohn's Disease Endoscopic Index of Severity (CDEIS) as a reference standard. Results: The VIGOR score (17.1 × initial slope of increase + 0.2 × excess volume + 2.3 × mural T2) and other activity scores all had comparable correlation to the CDEIS scores (observer 1: r = 0.58 and 0.59, and observer 2: r = 0.34–0.40 and 0.43–0.51, respectively). The VIGOR score, however, improved interobserver agreement compared to the other activity scores (intraclass correlation coefficient = 0.81 vs 0.44–0.59). A diagnostic accuracy of 80%–81% was seen for the VIGOR score, similar to the other scores. Conclusions: The VIGOR score achieves comparable accuracy to conventional MRI activity scores, but with significantly improved reproducibility, favoring its use for disease monitoring and therapy evaluation

    Heterologous expression of cytotoxic sesquiterpenoids from the medicinal mushroom Lignosus rhinocerotis in yeast

    Get PDF
    Background: Genome mining facilitated by heterologous systems is an emerging approach to access the chemical diversity encoded in basidiomycete genomes. In this study, three sesquiterpene synthase genes, GME3634, GME3638, and GME9210, which were highly expressed in the sclerotium of the medicinal mushroom Lignosus rhinocerotis, were cloned and heterologously expressed in a yeast system. Results: Metabolite profile analysis of the yeast culture extracts by GC-MS showed the production of several sesquiterpene alcohols (C 15 H 26 O), including cadinols and germacrene D-4-ol as major products. Other detected sesquiterpenes include selina-6-en-4-ol, ß-elemene, ß-cubebene, and cedrene. Two purified major compounds namely (+)-torreyol and a-cadinol synthesised by GME3638 and GME3634 respectively, are stereoisomers and their chemical structures were confirmed by 1 H and 13 C NMR. Phylogenetic analysis revealed that GME3638 and GME3634 are a pair of orthologues, and are grouped together with terpene synthases that synthesise cadinenes and related sesquiterpenes. (+)-Torreyol and a-cadinol were tested against a panel of human cancer cell lines and the latter was found to exhibit selective potent cytotoxicity in breast adenocarcinoma cells (MCF7) with IC 50 value of 3.5 ± 0.58 µg/ml while a-cadinol is less active (IC 50 = 18.0 ± 3.27 µg/ml). Conclusions: This demonstrates that yeast-based genome mining, guided by transcriptomics, is a promising approach for uncovering bioactive compounds from medicinal mushrooms

    TMARKER: A free software toolkit for histopathological cell counting and staining estimation

    Full text link
    BACKGROUND: Histological tissue analysis often involves manual cell counting and staining estimation of cancerous cells. These assessments are extremely time consuming, highly subjective and prone to error, since immunohistochemically stained cancer tissues usually show high variability in cell sizes, morphological structures and staining quality. To facilitate reproducible analysis in clinical practice as well as for cancer research, objective computer assisted staining estimation is highly desirable. METHODS: We employ machine learning algorithms as randomized decision trees and support vector machines for nucleus detection and classification. Superpixels as segmentation over the tissue image are classified into foreground and background and thereafter into malignant and benign, learning from the user's feedback. As a fast alternative without nucleus classification, the existing color deconvolution method is incorporated. RESULTS: Our program TMARKER connects already available workflows for computational pathology and immunohistochemical tissue rating with modern active learning algorithms from machine learning and computer vision. On a test dataset of human renal clear cell carcinoma and prostate carcinoma, the performance of the used algorithms is equivalent to two independent pathologists for nucleus detection and classification. CONCLUSION: We present a novel, free and operating system independent software package for computational cell counting and staining estimation, supporting IHC stained tissue analysis in clinic and for research. Proprietary toolboxes for similar tasks are expensive, bound to specific commercial hardware (e.g. a microscope) and mostly not quantitatively validated in terms of performance and reproducibility. We are confident that the presented software package will proof valuable for the scientific community and we anticipate a broader application domain due to the possibility to interactively learn models for new image types

    Comprehensive immunohistochemical analysis of PD-L1 shows scarce expression in castration-resistant prostate cancer

    Get PDF
    Background: We aimed to analyze the frequency and distribution of PD-L1 expression in specimens from prostate cancer (PC) patients using two different anti-PD-L1 antibodies (E1L3N, SP263). Materials and Methods: PD-L1 immunohistochemistry was performed in a tissue microarray consisting of 82 castration-resistant prostate cancer (CRPC) specimens, 70 benign prostate hyperplasia (BPH) specimens, 96 localized PC cases, and 3 PC cell lines, using two different antibodies (clones E1L3N, and SP263). Staining images for CD4, CD8, PD-L1, and PanCK of a single PD-L1 positive case were compared, using a newly developed dot-wise correlation method for digital images to objectively test for co-expression. Results: Depending on the antibody used, in tumor cells (TC) only five (E1L3N: 6%) and three (SP263: 3.7%) samples were positive. In infiltrating immune cells (IC) 12 (SP263: 14.6%) and 8 (E1L3N: 9.9%) specimens showed PD-L1 expression. Two PC cell lines (PC3, LnCaP) also displayed membranous immunoreactivity. All localized PCs or BPH samples tested were negative. Dot-wise digital correlation of expression patterns revealed a moderate positive correlation between PD-L1 and PanCK expression, whereas both PanCK and PD-L1 showed a weak negative Pearson correlation coefficient between CD4 and CD8. Conclusions: PD-L1 was not expressed in localized PC or BPH, and was only found in a minority of CRPC tumors and infiltrating immune cells. Protein expression maps and systematic dot-wise comparison could be a useful objective way to describe the relationship between immuno- and tumor-related proteins in the future, without the need to develop multiplex staining methods

    Computational TMA analysis and cell nucleus classification of renal cell carcinoma

    No full text
    We consider an automated processing pipeline for tissue micro array analysis (TMA) of renal cell carcinoma. It consists of several consecutive tasks, which can be mapped to machine learning challenges. We investigate three of these tasks, namely nuclei segmentation, nuclei classification and staining estimation. We argue for a holistic view of the processing pipeline, as it is not obvious whether performance improvements at individual steps improve overall accuracy. The experimental results show that classification accuracy, which is comparable to trained human experts, can be achieved by using support vector machines (SVM) with appropriate kernels. Furthermore, we provide evidence that the shape of cell nuclei increases the classification performance. Most importantly, these improvements in classification accuracy result in corresponding improvements for the medically relevant estimation of immunohistochemical staining

    Use of MS-GUIDE for identification of protein biomarkers for risk stratification of patients with prostate cancer

    Full text link
    BACKGROUND Non-invasive liquid biopsies could complement current pathological nomograms for risk stratification of prostate cancer patients. Development and testing of potential liquid biopsy markers is time, resource, and cost-intensive. For most protein targets, no antibodies or ELISAs for efficient clinical cohort pre-evaluation are currently available. We reasoned that mass spectrometry-based prescreening would enable the cost-effective and rational preselection of candidates for subsequent clinical-grade ELISA development. METHODS Using Mass Spectrometry-GUided Immunoassay DEvelopment (MS-GUIDE), we screened 48 literature-derived biomarker candidates for their potential utility in risk stratification scoring of prostate cancer patients. Parallel reaction monitoring was used to evaluate these 48 potential protein markers in a highly multiplexed fashion in a medium-sized patient cohort of 78 patients with ground-truth prostatectomy and clinical follow-up information. Clinical-grade ELISAs were then developed for two of these candidate proteins and used for significance testing in a larger, independent patient cohort of 263 patients. RESULTS Machine learning-based analysis of the parallel reaction monitoring data of the liquid biopsies prequalified fibronectin and vitronectin as candidate biomarkers. We evaluated their predictive value for prostate cancer biochemical recurrence scoring in an independent validation cohort of 263 prostate cancer patients using clinical-grade ELISAs. The results of our prostate cancer risk stratification test were statistically significantly 10% better than results of the current gold standards PSA alone, PSA plus prostatectomy biopsy Gleason score, or the National Comprehensive Cancer Network score in prediction of recurrence. CONCLUSION Using MS-GUIDE we identified fibronectin and vitronectin as candidate biomarkers for prostate cancer risk stratification
    corecore