6 research outputs found

    Π˜ΡΡ‚ΠΎΡ€ΠΈΠΊΠΎ-пСдагогичСский ΠΎΠ±Π·ΠΎΡ€ дСтской бСспризорности Π² Π”Ρ€Π΅Π²Π½Π΅ΠΉ Руси ΠΈ импСраторской России

    Full text link
    Axially resolved microphotoluminescence mapping of semiconductor nanowires held in an optical tweezers reveals important new experimental information regarding equilibrium trapping points and trapping stability of high aspect ratio nanostructures. In this study, holographic optical tweezers are used to scan trapped InP nanowires along the beam direction with respect to a fixed excitation source and the luminescent properties are recorded. It is observed that nanowires with lengths on the range of 3–15 ΞΌm are stably trapped near the tip of the wire with the long segment positioned below the focus in an inverted trapping configuration. Through the use of trap multiplexing we investigate the possibility of improving the axial stability of the trapped nanowires. Our results have important implication for applications of optically assisted nanowire assembly and optical tweezers based scanning probes microscopy

    Paper-Based Sensor for Monitoring Sun Exposure

    No full text
    An easy to use and easy to fabricate sun exposure sensor was prepared via the inkjet printing of titanium dioxide (TiO<sub>2</sub>), polyvinylpyrrolidone (PVP), and food dye on paper. The sun exposure sensor works by employing titanium dioxide (TiO<sub>2</sub>) as a photocatalyst to degrade the food dyes resulting in gradual discoloration of this film. The PVP serves as a binder to allow film formation. The discoloration can be observed by the naked eye or quantitatively monitored using UV–vis reflectance spectra. Finally, discoloration of the films was calibrated to match UV exposure time of different skin types, by using different UV neutral density filters with the ability to transmit between 1.5% and 70% of the irradiant UV light from the sources to the photoactive film

    Antibody Modified Porous Silicon Microparticles for the Selective Capture of Cells

    No full text
    Herein, the ability of porous silicon (PSi) particles for selectively binding to specific cells is investigated. PSi microparticles with a high reflectance band in the reflectivity profile are fabricated, and subsequently passivated and modified with antibodies via the CuΒ­(I)-catalyzed alkyne–azide cycloaddition reaction and succimidyl activation. To demonstrate the ability of the antibody-modified PSi particles to selectively bind to one cell type over others, HeLa cells were transfected with surface epitopes fused to fluorescent proteins. The antibody-functionalized PSi particles showed good selectivity for the corresponding surface protein on HeLa cells, with no significant cross-reactivity. The results are important for the application of PSi particles in cell sensing and drug delivery

    Ultrasensitive and Specific Measurement of Protease Activity Using Functionalized Photonic Crystals

    No full text
    Herein is presented a microsensor technology as a diagnostic tool for detecting specific matrix metalloproteinases (MMPs) at very low concentrations. MMP-2 and MMP-9 are detected using label free porous silicon (PSi) photonic crystals that have been made selective for a given MMP by filling the nanopores with synthetic polymeric substrates containing a peptide sequence for that MMP. Proteolytic cleavage of the peptide sequence results in a shift in wavelength of the main peak in the reflectivity spectrum of the PSi device, which is dependent on the amount of MMP present. The ability to detect picogram amounts of MMP-2 and MMP-9 released by primary retinal pigment epithelial (RPE) cells and iris pigment epithelial (IPE) cells stimulated with lipopolysaccharide (LPS) is demonstrated. It was found that both cell types secrete higher amounts of MMP-2 than MMP-9 in their stimulated state, with RPE cells producing higher amounts of MMPs than IPE cells. The microsensor performance was compared to conventional protease detection systems, including gelatin zymography and enzyme linked immunosorbent assay (ELISA). It was found that the PSi microsensors were more sensitive than gelatin zymography; PSi microsensors detected the presence of both MMP-2 and MMP-9 while zymography could only detect MMP-2. The MMP-2 and MMP-9 quantification correlated well with the ELISA. This new method of detecting protease activity shows superior performance to conventional protease assays and has the potential for translation to high-throughput multiplexed analysis

    Versatile β€œClick Chemistry” Approach to Functionalizing Silicon Quantum Dots: Applications toward Fluorescent Cellular Imaging

    No full text
    In this study, we describe a solution procedure for the preparation and surface modification of photostable colloidal silicon quantum dots (SiQDs) for imaging of cancer cells. Photoluminescent SiQDs were synthesized by reduction of halogenated silane precursors using a microemulsion process. It was shown that 1,8-nonadiyne molecules could be grafted onto the surface of hydrogen-terminated SiQDs via ultraviolet (UV)-promoted hydrosilylation, demonstrated by Fourier transform infrared spectroscopy (FTIR) measurements. In addition, various azide molecules were coupled onto nonadiyne-functionalized particles, rendering particles dispersible in selected polar and nonpolar solvents. The photoluminescence of functionalized SiQDs was stable against photobleaching and did not vary appreciably within biologically applicable pH and temperature ranges. To demonstrate compatibility with biological systems, water-soluble SiQDs were used for fluorescent imaging of HeLa cells. In addition, the SiQDs were shown to be non-cytotoxic at concentrations up to 240 ΞΌg/mL. The results presented herein provide good evidence for the versatility of functionalized SiQDs for fluorescent bioimaging application
    corecore