146 research outputs found

    On the contribution of the benthos to pelagic production

    Get PDF
    Annual production and consumption of oxygen were compared in large outdoor mesocosms differing only in the presence or absence of an intact benthic community and associated sediments. Both daily apparent production and nighttime respiration of oxygen were greater in tanks with a benthos. The fluxes of oxygen into, and dissolved inorganic nitrogen out of the bottom were also greater in tanks with an intact benthos. In tanks with a benthos, calculated gross system production increased 33% relative to tanks lacking a benthos. Depending on assumed O:N ratios only 45–60% of this increase was attributable to differences in the flux of inorganic nitrogen from the benthos to the water column. Nearly 40% was evidently fueled by higher rates of recycling in the water column. Between 3 and 17% of the difference in production could not be attributed to either source. The benthos apparently affects production in the water column not only by supplying nutrients directly, but also by enhancing rates of pelagic recycling

    Application of filtration rate models to field populations of bivalves: an assessment using experimental mesocosms

    Get PDF
    Gross sedimentation of 14C labelled carbon was 58% greater in mesocosms (13 m3) containing the bivalve Mercenaria mercenaria (16 in m-2) relative to controls without this filter feeder. This difference was attributed to the activities of M. mercenaria and presumably due to filtration of particles from the water column. Of this increase, 32% and 47% were attributable to assimilation into clam tissue and respiration by the benthic community respectively. Permanent biodeposition by the clams contributed the least (21%). The ability of 8 filtration rate models to predict the increase in gross sedimentation was examined. Those models (4) which were based on data for bivalves filtering natural suspensions of particulate matter gave estimates which agreed well with observed differences. Those models (4) which yielded poor predictions used dues or algal monocultures to generate data and overestimated gross sedimentation due to bivalves by up to an order of magnitude. Such overestimation may exaggerate the role of bivalves in enhancing sedimentation and controlling phytoplankton biomass in shallow waters

    Monitoring and modeling primary production in coastal waters: studies in Massachusetts Bay 1992-1994

    Get PDF
    During 1992-1994, we made shipboard incubations suitable for determining rates of primary production in water from Boston Harbor, Massachusetts Bay, and Cape Cod Bay (Massachusetts, USA). These measurements were part of an extensive baseline monitoring program to characterize water quality prior to diversion of effluent from Boston Harbor directly into Massachusetts Bay via a submarine outfall diffuser. Production (P) was measured using whole-water samples exposed to irradiance (I) levels from ~5 to 2000 µE m-2 s-1. P-I incubations were performed on 6 surveys a year, spaced to capture principal features of the annual production cycle. The number of stations and depths examined varied between years. There were 10 stations and 2 depths sampled in 1992-1993. In 1994, we performed in-depth studies at 2 stations (Boston Harbor\u27s edge and western Massachusetts Bay) by sampling 4 depths. Using depth-intensive 1994 data a simple empirical regression model, using information on chlorophyll biomass, incident daily light, and the depth of the photic zone, predicted integrated primary production rates derived from P-I incubations. The regression model was virtually the same as described for other coastal waters, giving confidence in general use of the model as an extrapolation tool. Using the 1994-based empirical model, we obtained favorable comparisons with production rates modeled from 1992-1993 P-I incubations. Combining the regression model with data on chlorophyll, light, and the photic zone collected on frequent hydrographic surveys (up to 16 yr-1), annual primary production was estimated for 1992-1994. Primary production in an intensively studied region of western Massachusetts Bay (21 hydrographic profile stations in an area ~100 km2) ranged from 386 to 468 g C m-2 yr-1. For a station at the edge of Boston Harbor near Deer Island extrapolations suggested production rates of 263 to 546 g C m-2 yr-1. Based on 2 stations in central Cape Cod Bay (1992-1993 only), model extrapolations suggested an annual production of 527 to 613 g C m-2 yr-1. Analyses using incubation and modeling results suggested that production variability was strongly related to fluctuations in incident irradiance, especially at daily to seasonal time scales. Chlorophyll variability secondarily influenced production, especially at seasonal to annual time scales. Finally, we provide a case where equivalent production was achieved in environments with contrasting water quality (nutrient and chlorophyll concentrations) because of variations in the depth of the photic zone (controlled by both chlorophyll and non-chlorophyll turbidity). Comparative analyses showed that our study estimates of primary production were consistent with the literature on nutrient-rich shelf environments. In conclusion, our study validated an empirical modeling approach to determining primary production in coastal marine waters

    The effects of the filter-feeding clam Mercenaria mercenaria on carbon cycling in experimental marine mesocosms

    Get PDF
    The metabolism and the fate of 14C labelled carbon was examined in 4 outdoor mesocosm (13 m3) tanks containing both benthic and pelagic compartments. Mesocosms with (16/m2) and without the clam, Mercenaria mercenaria were compared. System production, net and gross sedimentation of particulate carbon and benthic remineralization of dissolved inorganic nitrogen were all greater in mesocosms with clams. A filtration rate model, dependent on clam size and temperature, explained between 74–114% of the increased gross sedimentation in clam tanks relative to controls.The higher production in the clam tanks was at least in part due to a greater flux of dissolved inorganic nitrogen from the benthos. Despite this greater production in the clam tanks, water column biomass remained similar to controls. Calculations based on the filtration rate model indicated that clams could have consumed between 30% and 46% of the excess biomass produced during the day. Loss of particles due to processes in the water column appeared to consume most of this excess biomass. Although clams enhanced production and sedimentation, they did not limit phytoplankton biomass in the water column through filtration

    Relative mobility of radioactive trace elements across the sediment-water interface in the MERL model ecosystems of Narragansett Bay

    Get PDF
    The mobilities of radioactive trace elements across the water sediment boundary of a coastal marine ecosystem were investigated. The studies carried out included chemical speciation experiments ofthe solution and solid phases, as well as verification experiments in controlled model ecosystems ( MERL tanks). The latter included backdiffusion experiments under oxic and anoxic conditions and experiments with artificially increased sediment resuspension rates. These studies have produced seven general conclusions: (1) The backdiffusion of Cs, Mn, Co, and Zn radiotracers across the sediment-water interface into oxic waters and of Mn and Co radiotracers into anoxic waters was predicted from laboratory experiments. (2) The removal from the water and the partial immobilization in the sediments of Cs, Zn and Cd tracers, during anoxic conditions, agreed with results from selective leaching experiments of surface sediments with dithionite-citrate solution, a mildly reducing agent which can reprecipitate liberated metals as sulfides. While most nuclides were leached by this solution to the same extent as by hydroxylamine, another reducing agent, Zn, Cd and Cs tracers were not, possibly due to the formation of sulfidic and other phases by the former solution. (3) Radioisotopes of particle-reactive elements (Sn, Fe, Hg and Cr) were shown by sequential extraction and ultrafiltration experiments to be involved in the dynamic cycle of colloid formation and aggregation in the water column and sediments. (4) In order to extend the information on nuclide behavior gained from the radiotracer methodology to stable trace elements, (which are often introduced into coastal water in ionic form) stable metals were added to one tank. Radiotracer behavior in the water column (removal rates and extent of uptake by suspended particles) was quite similar to that of their stable metal counterparts at ambient concentrations (Mn, Cr, Fe, Cd and Zn), added simultaneously to one tank, and to the metal behavior in other tanks operating under similar conditions. (5) The experiments with increased resuspension rates without concomitant increased bioturbation rates had, as expected, only small effects on removal rates of the radiotracers. (6) Sediment profiles of the tracers revealed both seasonal and element-specific differences in mobility near the sediment interface. Tracer profiles allowed the calculation of bioturbation (tracer microspheres) and pore water diffusion (22Na) rates, as well as an investigation of the spacial and temporal dynamics of trace element cycling near the sediment-water interface. (7) Se and Cr nuclides which were added in different oxidation states to different tanks, showed that the higher oxidation state forms (Se-VI, Cr-VI) are removed more slowly from the water column than the lower oxidation state forms (Se-IV, Cr-III). Furthermore, speciation experiments have shown that the increase in the colloidal fraction of Se may be used to calculate the characteristic times of Se-reduction to elemental or organically-bound forms

    Phosphorus and nitrogen limitation of primary production in a simulated estuarine gradient

    Get PDF
    The transition between phosphorus limitation of primary production in freshwater and nitrogen limitation in seawater was examined along an estuarine gradient simulated in 4 large 13 m3 enclosures connected in a series and containing pelagic and benthic subsystems. Nominal salinities of 0, 5, 10 and 25 ppt were maintained by exchanging appropriate volumes of water between enclosures. River water, which served as a freshwater endmember, was naturally high in N relative to P, while the oceanic endmember (water from Narragansett Bay, RI, USA) was low in N relative to P. Production in the water column was supported by external inputs and recycled nutrients. Bioassays, inorganic nutrient concentrations and N:P ratios of the seston and inorganic nutrients indicated that phosphorus was limiting at 0, 5 and 10 ppt, while nitrogen was limiting at 25 ppt. Coincident with this shift in limiting nutrient was a shift in the N:P ratio of nutrient supply from greater than the Redfield ratio of 16 to less than 16. External inputs established relative rates of supply in each enclosure. The relative proportion of N and P in external inputs was largely a function of the hydrodynamic mixing of fresh (high N, low P) and salt water (low N, high P) endmembers. At the scale of the estuarine segment or enclosure, neither recycled inputs from the benthos and water column, nitrogen fixation nor internal losses of N and P to sedimentation and/or denitrification materially altered relative supply rates, despite a hydrodynamic residence time of 27 d

    Effects of business-as-usual anthropogenic emissions on air quality.

    Get PDF
    The atmospheric chemistry general circulation model EMAC has been used to estimate the impact of anthropogenic emission changes on global and regional air quality in recent and future years (2005, 2010, 2025 and 2050). The emission scenario assumes that population and economic growth largely determine energy and food consumption and consequent pollution sources with the current technologies ("business as usual"). This scenario is chosen to show the effects of not implementing legislation to prevent additional climate change and growing air pollution, other than what is in place for the base year 2005, representing a pessimistic (but feasible) future. By comparing with recent observations, it is shown that the model reproduces the main features of regional air pollution distributions though with some imprecisions inherent to the coarse horizontal resolution (~100 km) and simplified bottom-up emission input. To identify possible future hot spots of poor air quality, a multi pollutant index (MPI), suited for global model output, has been applied. It appears that East and South Asia and the Middle East represent such hotspots due to very high pollutant concentrations, although a general increase of MPIs is observed in all populated regions in the Northern Hemisphere. In East Asia a range of pollutant gases and fine particulate matter (PM2.5) is projected to reach very high levels from 2005 onward, while in South Asia air pollution, including ozone, will grow rapidly towards the middle of the century. Around the Arabian Gulf, where natural PM2.5 concentrations are already high (desert dust), ozone levels are expected to increase strongly. The per capita MPI (PCMPI), which combines demographic and pollutants concentrations projections, shows that a rapidly increasing number of people worldwide will experience reduced air quality during the first half of the 21st century. Following the business as usual scenario, it is projected that air quality for the global average citizen in 2050 would be almost comparable to that for the average citizen in the East Asia in the year 2005, which underscores the need to pursue emission reductions.JRC.H.2-Air and Climat

    The time to extinction for an SIS-household-epidemic model

    Full text link
    We analyse a stochastic SIS epidemic amongst a finite population partitioned into households. Since the population is finite, the epidemic will eventually go extinct, i.e., have no more infectives in the population. We study the effects of population size and within household transmission upon the time to extinction. This is done through two approximations. The first approximation is suitable for all levels of within household transmission and is based upon an Ornstein-Uhlenbeck process approximation for the diseases fluctuations about an endemic level relying on a large population. The second approximation is suitable for high levels of within household transmission and approximates the number of infectious households by a simple homogeneously mixing SIS model with the households replaced by individuals. The analysis, supported by a simulation study, shows that the mean time to extinction is minimized by moderate levels of within household transmission

    Quantum dynamics in strong fluctuating fields

    Full text link
    A large number of multifaceted quantum transport processes in molecular systems and physical nanosystems can be treated in terms of quantum relaxation processes which couple to one or several fluctuating environments. A thermal equilibrium environment can conveniently be modelled by a thermal bath of harmonic oscillators. An archetype situation provides a two-state dissipative quantum dynamics, commonly known under the label of a spin-boson dynamics. An interesting and nontrivial physical situation emerges, however, when the quantum dynamics evolves far away from thermal equilibrium. This occurs, for example, when a charge transferring medium possesses nonequilibrium degrees of freedom, or when a strong time-dependent control field is applied externally. Accordingly, certain parameters of underlying quantum subsystem acquire stochastic character. Herein, we review the general theoretical framework which is based on the method of projector operators, yielding the quantum master equations for systems that are exposed to strong external fields. This allows one to investigate on a common basis the influence of nonequilibrium fluctuations and periodic electrical fields on quantum transport processes. Most importantly, such strong fluctuating fields induce a whole variety of nonlinear and nonequilibrium phenomena. A characteristic feature of such dynamics is the absence of thermal (quantum) detailed balance.Comment: review article, Advances in Physics (2005), in pres
    • …
    corecore