6,162 research outputs found

    Percolation-induced exponential scaling in the large current tails of random resistor networks

    Get PDF
    There is a renewed surge in percolation-induced transport properties of diverse nano-particle composites (cf. RSC Nanoscience & Nanotechnology Series, Paul O'Brien Editor-in-Chief). We note in particular a broad interest in nano-composites exhibiting sharp electrical property gains at and above percolation threshold, which motivated us to revisit the classical setting of percolation in random resistor networks but from a multiscale perspective. For each realization of random resistor networks above threshold, we use network graph representations and associated algorithms to identify and restrict to the percolating component, thereby preconditioning the network both in size and accuracy by filtering {\it a priori} zero current-carrying bonds. We then simulate many realizations per bond density and analyze scaling behavior of the complete current distribution supported on the percolating component. We first confirm the celebrated power-law distribution of small currents at the percolation threshold, and second we confirm results on scaling of the maximum current in the network that is associated with the backbone of the percolating cluster. These properties are then placed in context with global features of the current distribution, and in particular the dominant role of the large current tail that is most relevant for material science applications. We identify a robust, exponential large current tail that: 1. persists above threshold; 2. expands broadly over and dominates the current distribution at the expense of the vanishing power law scaling in the small current tail; and 3. by taking second moments, reproduces the experimentally observed power law scaling of bulk conductivity above threshold

    The Farmer and the Rancher

    Get PDF
    Vast, dry, and flat. The Great Plains of the continental US stretch from the foot of the Rockies through to the grasslands by the Mississippi, as far north as Canada and as far south as Texas. Covering 1.3 million square kilometres (a size roughly equivalent to Peru), it is renowned for being an immense expanse of farms and paddocks, with a tree, a creek or a town thrown in for variety every so often

    Self-absorption in the solar transition region

    Full text link
    Transient brightenings in the transition region of the Sun have been studied for decades and are usually related to magnetic reconnection. Recently, absorption features due to chromospheric lines have been identified in transition region emission lines raising the question of the thermal stratification during such reconnection events. We analyse data from the Interface Region Imaging Spectrograph (IRIS) in an emerging active region. Here the spectral profiles show clear self-absorption features in the transition region lines of Si\,{\sc{iv}}. While some indications existed that opacity effects might play some role in strong transition region lines, self-absorption has not been observed before. We show why previous instruments could not observe such self-absorption features, and discuss some implications of this observation for the corresponding structure of reconnection events in the atmosphere. Based on this we speculate that a range of phenomena, such as explosive events, blinkers or Ellerman bombs, are just different aspects of the same reconnection event occurring at different heights in the atmosphere.Comment: Accepted for publication in Ap

    Gutzwiller Hybrid Quantum-Classical Computing Approach for Correlated Materials

    Get PDF
    Rapid progress in noisy intermediate-scale quantum (NISQ) computing technology has led to the development of novel resource-efficient hybrid quantum-classical algorithms, such as the variational quantum eigensolver (VQE), that can address open challenges in quantum chemistry, physics and material science. Proof-of-principle quantum chemistry simulations for small molecules have been demonstrated on NISQ devices. While several approaches have been theoretically proposed for correlated materials, NISQ simulations of interacting periodic models on current quantum devices have not yet been demonstrated. Here, we develop a hybrid quantum-classical simulation framework for correlated electron systems based on the Gutzwiller variational embedding approach. We implement this framework on Rigetti quantum processing units (QPUs) and apply it to the periodic Anderson model, which describes a correlated heavy electron band hybridizing with non-interacting conduction electrons. Our simulation results quantitatively reproduce the known ground state quantum phase diagram including metallic, Kondo and Mott insulating phases. This is the first fully self-consistent hybrid quantum-classical simulation of an infinite correlated lattice model executed on QPUs, demonstrating that the Gutzwiller hybrid quantum-classical embedding framework is a powerful approach to simulate correlated materials on NISQ hardware. This benchmark study also puts forth a concrete pathway towards practical quantum advantage on NISQ devices.Comment: 14 pages, 5 figure

    Maternal diabetes up-regulates NOX2 and enhances myocardial ischaemia/reperfusion injury in adult offspring

    Get PDF
    Offspring of diabetic mothers are at risk of cardiovascular diseases in adulthood. However, the underlying molecular mechanisms are not clear. We hypothesize that prenatal exposure to maternal diabetes up-regulates myocardial NOX2 expression and enhances ischaemia/reperfusion (I/R) injury in the adult offspring. Maternal diabetes was induced in C57BL/6 mice by streptozotocin. Glucose-tolerant adult offspring of diabetic mothers and normal controls were subjected to myocardial I/R injury. Vascular endothelial growth factor (VEGF) expression, ROS generation, myocardial apoptosis and infarct size were assessed. The VEGF-Akt (protein kinase B)-mammalian target of rapamycin (mTOR)-NOX2 signalling pathway was also studied in cultured cardiomyocytes in response to high glucose level. In the hearts of adult offspring from diabetic mothers, increases were observed in VEGF expression, NOX2 protein levels and both Akt and mTOR phosphorylation levels as compared to the offspring of control mothers. After I/R, ROS generation, myocardial apoptosis and infarct size were all significantly higher in the offspring of diabetic mothers relative to offspring of control mothers, and these differences were diminished by in vivo treatment with the NADPH oxidase inhibitor apocynin. In cultured cardiomyocytes, high glucose increased mTOR phosphorylation, which was inhibited by the PI3 kinase inhibitor LY294002. Notably, high glucose-induced NOX2 protein expression and ROS production were inhibited by rapamycin. In conclusion, maternal diabetes promotes VEGF-Akt-mTOR-NOX2 signalling and enhances myocardial I/R injury in the adult offspring. Increased ROS production from NOX2 is a possible molecular mechanism responsible for developmental origins of cardiovascular disease in offspring of diabetic mothers

    Network-Based Assessments of Percolation-Induced Current Distributions in Sheared Rod Macromolecular Dispersions

    Get PDF
    Conducting high-aspect-ratio rods with 1-10 nm-scale diameters dispersed in poorly conducting matrices at extremely low, O(1%), volume fractions induce dramatic gains in bulk conductivity at rod percolation threshold. Experimentally [Nan, Shen, and Ma, Annu. Rev. Mater. Res., 40 (2010), pp. 131-151], bulk conductivity abandons the prepercolation, linear scaling with volume fraction that follows from homogenization theory [Zheng et al., Adv. Funct. Mater., 15 (2005), pp. 627-638], and then postpercolation jumps orders of magnitude to approach that of the pure rod macromolecular phase as predicted by classical percolation theory [Stauffer and Aharony, Introduction to Percolation Theory, CRC Press, Boca Raton, FL, 1994]. Our aim here is to use the orientational probability distribution functions from kinetic Brownian rod dispersion flow codes [Forest, Wang, and Zhou, Rheol. Acta, 44 (2004), pp. 80-93] to generate physical three-dimensional (3D) nanorod dispersions, followed by graph-theoretic algorithms applied to each realization to address two practical materials science questions that lie beyond the above theoretical results. How does bulk conductivity scale in the presence of anisotropy induced by shear film flow at and above rod percolation threshold? What are the statistical distributions of current within the rod phase? Our techniques reveal a robust exponential, large current tail of the current distribution above percolation threshold that persists over a wide range of shear rates and volume fractions; the exponential rates are spatially anisotropic, with different scaling in the flow, flow gradient, and vorticity axes of the film. The second moment of the computed current distributions furthermore captures and reproduces the bulk conductivity scaling seen experimentally. These results extend the scaling behavior for the classical setting of 3D lattice bond percolation [Shi et al., Multiscale Model. Simul., 11 (2013), pp. 1298-1310] to physical 3D nanorod dispersions with random centers of mass and shear-induced anisotropy in the rod orientational distribution. © 2014 Society for Industrial and Applied Mathematics

    Microstructural Evolution in Chroming Coatings Friction Pairs under Dry Sliding Test Conditions

    Get PDF
    The microstructures of subsurface layers of 20CrMnTi steel pins against chroming and nonchroming T10 under dry sliding tests were studied by means of OM (optical microscopy), XRD (X-ray diffraction), and SEM (scanning electron microscopy). Results showed that the chroming coating strengthened the disc surface and significantly affected microstructural evolution. Three layers—the matrix, deformation layer (DL), and surface layer (SL)—formed in 20CrMnTi for the chroming T10. The matrix and deformation layer (DL) formed in 20CrMnTi for the nonchroming T10. The formation of the microstructure was considered as a result of the shear deformation

    Voltage Modulation Using Virtual Positive Impedance Concept for Active Damping of Small DC-Link Drive System

    Get PDF
    • …
    corecore