88 research outputs found

    A seminal paper linking ocean acoustics and physical oceanography

    Get PDF
    17 USC 105 interim-entered record; under review.A look back at a historical article that had a significant impact on the science and pradtice of acoustics. Article: Sound propagation through a fluctuating stratified ocean: Theory and observation Author: Walter H. Munk and Fred Zachariasen Publication Date: April 1976 (JASA 59, 818); https://doi.org/10.1121/1.38093

    Observations of sound-speed fluctuations in the Beaufort Sea from summer 2016 to summer 2017

    Get PDF
    © The Author(s), 2021. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Kucukosmanoglu, M., Colosi, J. A., Worcester, P. F., Dzieciuch, M. A., & Torres, D. J. Observations of sound-speed fluctuations in the Beaufort Sea from summer 2016 to summer 2017. Journal of the Acoustical Society of America, 149(3), (2021): 1536-1548, https://doi.org/10.1121/10.0003601.Due to seasonal ice cover, acoustics can provide a unique means for Arctic undersea communication, navigation, and remote sensing. This study seeks to quantify the annual cycle of the thermohaline structure in the Beaufort Sea and characterize acoustically relevant oceanographic processes such as eddies, internal waves, near-inertial waves (NIWs), and spice. The observations are from a seven-mooring, 150-km radius acoustic transceiver array equipped with oceanographic sensors that collected data in the Beaufort Sea from 2016 to 2017. Depth and time variations of the sound speed are analyzed using isopycnal displacements, allowing a separation of baroclinic processes and spice. Compared to lower latitudes, the overall sound speed variability is small with a maximum root mean square of 0.6 m/s. The largest source of variability is spice, most significant in the upper 100 m, followed by eddies and internal waves. The displacement spectrum in the internal wave band is time dependent and different from the Garret-Munk (GM) spectrum. The internal wave energy varied with time averaging 5% of the GM spectrum. The spice sound-speed frequency spectrum has a form very different from the displacement spectrum, a result not seen at lower latitudes. Because sound speed variations are weak, observations of episodic energetic NIWs with horizontal currents up to 20 cm/s have potential acoustical consequences.This research was supported by the Office of Naval Research (ONR) and M.K. was supported by an ONR Ocean Acoustics Graduate Student Fellowship under Award No. N00014-19-1-2203. The 600 kHz ADCP and IPS ice draft data were supported by the ONR Arctic and Global Prediction Program (ONR 322AG) under Award No. N00014-15-1-2782. This material is based on work supported by the ONR under Award No. N00014-15-2068

    Three-dimensional bottom diffraction in the North Pacific

    Get PDF
    Author Posting. © Acoustical Society of America, 2019. This article is posted here by permission of Acoustical Society of America for personal use, not for redistribution. The definitive version was published in Journal of the Acoustical Society of America 146(3), (2019): 1913-1922, doi:10.1121/1.5125427.A significant aspect of bottom-interaction in deep water acoustic propagation, from point sources to point receivers, is the diffraction (or scattering) of energy from discrete seafloor locations along repeatable, deterministic paths in three-dimensions. These bottom-diffracted surface-reflected (BDSR) paths were first identified on the North Pacific acoustic laboratory experiment in 2004 (NPAL04) for a diffractor located on the side of a small seamount. On the adjacent deep seafloor, ambient noise and propagation in the ocean sound channel were sufficiently quiet that the BDSRs were the dominant arrival. The ocean bottom seismometer augmentation in the North Pacific (OBSANP) experiment in June–July 2013 studied BDSRs at the NPAL04 site in more detail. BDSRs are most readily identified by the arrival time of pulses as a function of range to the receiver for a line of transmissions. The diffraction points for BDSRs occur on the relatively featureless deep seafloor as well as on the sides of small seamounts. Although the NPAL04 and OBSANP experiments had very different geometries the same diffractor location is consistent with observed arrivals in both experiments within the resolution of the analysis. On OBSANP the same location excites BDSRs for 77.5, 155, and 310 Hz transmissions.We greatly appreciate the support from Captain Curl, the officers, and crew of the R/V Melville (MV1308). The OBS data used in this research was acquired on instruments from the ocean bottom seismograph instrument pool (OBSIP) at Scripps Institution of Oceanography. Ernie Aaron (SIO) was responsible for shipboard OBS operations. The multi-beam data was processed using the MB-System (Caress and Chayes, 1996). Figure 1 was prepared using the generic mapping tool (Wessel and Smith, 1998). Feedback and reviews from an anonymous reviewer and the editorial staff of JASA are also greatly appreciated. The OBSANP experiment was funded by the ONR Ocean Acoustics Program (Code 322 OA) under Grant Nos. N00014-10-1-0987 and N00014-10-1-0510. Analysis was carried out under ONR Grant Nos. N00014-14-1-0324, N00014-16-1-2337, and N00014-17-C-7043.2020-03-3

    OBSANP data acquisition system : operator's manual and system overview

    Get PDF
    On the Ocean Bottom Seismometer Augmentation in the North Pacific Experiment (OBSANP, June-July, 2013, R/V Melville), a VLA and twelve OBSs were deployed to listen to an active acoustic source, a J15-3. This report describes the hardware and software used to control and record the acoustic transmissions from the source. Some significant features of the system are: 1) The system transmits general user-defined source functions, such as M-sequences (.SIO files). 2) In addition to controlling the source waveform, the system also records six real-time channels in binary files with user-selectable lengths: the monitor hydrophone mounted near the source, the power amplifier voltage and current, the depth of the source, Vref signal driving the power amplifiers and an IRIG-B time reference. Files are output in .AUV format with a precision GPSbased time stamp in the file name. 3) The transmission start time along with ADC and DAC sample rates are disciplined to GPS time. 4) A convenient, Labview based, user interface provides real-time source control and monitoring. 5) The software provides parsing and logging of gyro and GPS NMEA sentences. The system, which was based on an earlier system from Scripps MPL, worked well on OBSANP and is available for future projects.Funding was provided by the Office of Naval Research under contract N00014-10-1-0987 and N00014-10-1-0510

    A deep ocean acoustic noise floor, 1–800 Hz

    Get PDF
    Author Posting. © Acoustical Society of America, 2018. This article is posted here by permission of Acoustical Society of America for personal use, not for redistribution. The definitive version was published in Journal of the Acoustical Society of America 143 (2018): 1223, doi:10.1121/1.5025042.The ocean acoustic noise floor (observed when the overhead wind is low, ships are distant, and marine life silent) has been measured on an array extending up 987 m from 5048 m depth in the eastern North Pacific, in what is one of only a few recent measurements of the vertical noise distribution near the seafloor in the deep ocean. The floor is roughly independent of depth for 1–6 Hz, and the slope (∼ f−7) is consistent with Longuet-Higgins radiation from oppositely-directed surface waves. Above 6 Hz, the acoustic floor increases with frequency due to distant shipping before falling as ∼ f−2 from 40 to 800 Hz. The noise floor just above the seafloor is only about 5 dB greater than during the 1975 CHURCH OPAL experiment (50–200 Hz), even though these measurements are not subject to the same bathymetric blockage. The floor increases up the array by roughly 15 dB for 40–500 Hz. Immediately above the seafloor, the acoustic energy is concentrated in a narrow, horizontal beam that narrows as f−1 and has a beam width at 75 Hz that is less than the array resolution. The power in the beam falls more steeply with frequency than the omnidirectional spectrum.The OBSANP cruise was funded by the Office of Naval Research under Grant Nos. N00014-10-1-0987, N00014-14- 1-0324, N00014-10-1-0510, and N00014-10-1-0990

    Wind sea behind a cold front and deep ocean acoustics

    Get PDF
    Author Posting. © American Meteorological Society, 2016. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 46 (2016): 1705-1716, doi:10.1175/JPO-D-15-0221.1.A rapid and broadband (1 h, 1 < f < 400 Hz) increase in pressure and vertical velocity on the deep ocean floor was observed on seven instruments comprising a 20-km array in the northeastern subtropical Pacific. The authors associate the jump with the passage of a cold front and focus on the 4- and 400-Hz spectra. At every station, the time of the jump is consistent with the front coming from the northwest. The apparent rate of progress, 10–20 km h−1 (2.8–5.6 m s−1), agrees with meteorological observations. The acoustic radiation below the front is modeled as arising from a moving half-plane of uncorrelated acoustic dipoles. The half-plane is preceded by a 10-km transition zone, over which the radiator strength increases linearly from zero. With this model, the time derivative of the jump at a station yields a second and independent estimate of the front’s speed, 8.5 km h−1 (2.4 m s−1). For the 4-Hz spectra, the source physics is taken to be Longuet-Higgins radiation. Its strength depends on the quantity , where Fζ is the wave amplitude power spectrum and I the overlap integral. Thus, the 1-h time constant observed in the bottom data implies a similar time constant for the growth of the wave field quantity behind the front. The spectra at 400 Hz have a similar time constant, but the jump occurs 25 min later. The implications of this difference for the source physics are uncertain.The OBSANP cruise was funded by the Office of Naval Research under Grants N00014-10-1-0987, N00014-14-1-0324, N00014-10-1-0510, and N00014-10-1-0990

    Weakly dispersive modal pulse propagation in the North Pacific Ocean

    Get PDF
    Author Posting. © Acoustical Society of America, 2013. This article is posted here by permission of Acoustical Society of America or personal use, not for redistribution. The definitive version was published in Journal of the Acoustical Society of America 134 (2013): 3386, doi:10.1121/1.4820882.The propagation of weakly dispersive modal pulses is investigated using data collected during the 2004 long-range ocean acoustic propagation experiment (LOAPEX). Weakly dispersive modal pulses are characterized by weak dispersion- and scattering-induced pulse broadening; such modal pulses experience minimal propagation-induced distortion and are thus well suited to communications applications. In the LOAPEX environment modes 1, 2, and 3 are approximately weakly dispersive. Using LOAPEX observations it is shown that, by extracting the energy carried by a weakly dispersive modal pulse, a transmitted communications signal can be recovered without performing channel equalization at ranges as long as 500 km; at that range a majority of mode 1 receptions have bit error rates (BERs) less than 10%, and 6.5% of mode 1 receptions have no errors. BERs are estimated for low order modes and compared with measurements of signal-to-noise ratio (SNR) and modal pulse spread. Generally, it is observed that larger modal pulse spread and lower SNR result in larger BERs.This work was supported by the Office of Naval Research, Code 322, Grant Nos. N00014-06-1-0245, N00014-08-1-0195, and N00014-11-1-0194

    Modal analysis of the range evolution of broadband wavefields in the North Pacific Ocean : low mode numbers

    Get PDF
    Author Posting. © Acoustical Society of America, 2012. This article is posted here by permission of Acoustical Society of America for personal use, not for redistribution. The definitive version was published in Journal of the Acoustical Society of America 131 (2012): 4409-4427, doi:10.1121/1.4707431.The results of mode-processing measurements of broadband acoustic wavefields made in the fall of 2004 as part of the Long-Range Ocean Acoustic Propagation Experiment (LOAPEX) in the eastern North Pacific Ocean are reported here. Transient wavefields in the 50–90 Hz band that were recorded on a 1400 -m long 40 element vertical array centered near the sound channel axis are analyzed. This array was designed to resolve low-order modes. The wavefields were excited by a ship-suspended source at seven ranges, between approximately 50 and 3200 km, from the receiving array. The range evolution of broadband modal arrival patterns corresponding to fixed mode numbers (“modal group arrivals”) is analyzed with an emphasis on the second (variance) and third (skewness) moments. A theory of modal group time spreads is described, emphasizing complexities associated with energy scattering among low-order modes. The temporal structure of measured modal group arrivals is compared to theoretical predictions and numerical simulations. Theory, simulations, and observations generally agree. In cases where disagreement is observed, the reasons for the disagreement are discussed in terms of the underlying physical processes and data limitations.This work was supported by the Office of Naval Research, Code 322, Grant Nos. N00014-08-1-0195, N00014-06-1-0245, and N0014-11-1-0194

    Ocean Bottom Seismometer Augmentation in the North Pacific (OBSANP) - cruise report

    Get PDF
    The Ocean Bottom Seismometer Augmentation in the North Pacific Experiment (OBSANP, June-July, 2013, R/V Melville) addresses the coherence and depth dependence of deep-water ambient noise and signals. During the 2004 NPAL Experiment in the North Pacific Ocean, in addition to predicted ocean acoustic arrivals and deep shadow zone arrivals, we observed "deep seafloor arrivals" (DSFA) that were dominant on the seafloor Ocean Bottom Seismometer (OBS) (at about 5000m depth) but were absent or very weak on the Distributed Vertical Line Array (DVLA) (above 4250m depth). At least a subset of these arrivals correspond to bottomdiffracted surface-reflected (BDSR) paths from an out-of-plane seamount. BDSR arrivals are present throughout the water column, but at depths above the conjugate depth are obscured by ambient noise and PE predicted arrivals. On the 2004 NPAL/LOAPEX experiment BDSR paths yielded the largest amplitude seafloor arrivals for ranges from 500 to 3200km. The OBSANP experiment tests the hypothesis that BDSR paths contribute to the arrival structure on the deep seafloor even at short ranges (from near zero to 4-1/2CZ). The OBSANP cruise had three major research goals: a) identification and analysis of DSFA and BDSR arrivals occurring at short (1/2CZ) ranges in the 50 to 400Hz band, b) analysis of deep sea ambient noise in the band 0.03 to 80Hz, and c) analysis of the frequency dependence of BR and SRBR paths. On OBSANP we deployed a 32 element VLA from 12 to 1000m above the seafloor, eight short-period OBSs and four long-period OBSs and carried out a 15day transmission program using a J15-3 acoustic source.Funding was provided by the Office of Naval Research under contract #'s N00014-10-1-0987 and N00014-10-1-051

    Bottom interacting sound at 50 km range in a deep ocean environment

    Get PDF
    Author Posting. © Acoustical Society of America, 2012. This article is posted here by permission of Acoustical Society of America for personal use, not for redistribution. The definitive version was published in Journal of the Acoustical Society of America 132 (2012): 2224-2231, doi:10.1121/1.4747617.Data collected during the 2004 Long-range Ocean Acoustic Propagation Experiment provide absolute intensities and travel times of acoustic pulses at ranges varying from 50 to 3200 km. In this paper a subset of these data is analyzed, focusing on the effects of seafloor reflections at the shortest transmission range of approximately 50 km. At this range bottom-reflected (BR) and surface-reflected, bottom-reflected energy interferes with refracted arrivals. For a finite vertical receiving array spanning the sound channel axis, a high mode number energy in the BR arrivals aliases into low mode numbers because of the vertical spacing between hydrophones. Therefore, knowledge of the BR paths is necessary to fully understand even low mode number processes. Acoustic modeling using the parabolic equation method shows that inclusion of range-dependent bathymetry is necessary to get an acceptable model-data fit. The bottom is modeled as a fluid layer without rigidity, without three dimensional effects, and without scattering from wavelength-scale features. Nonetheless, a good model-data fit is obtained for sub-bottom properties estimated from the data.This work was supported by the Office of Naval Research, Code 322, Grant Nos. N00014- 10-1-0987, N00014-11-1-0194, and N00014-10-1-0510
    corecore