5 research outputs found

    The bright future of peptidomics

    No full text
    In this final chapter I project my personal perspective on the future of peptidomics. A bird’s eye view is shed on the discipline and a bid is made to frame it in the broader arena of the life sciences of tomorrow. Inferring from its present state-of-the-art and from the general direction of some evolutionary trends which are to be discerned, a case is made that peptidomics enjoys full ripeness as a young branch of science today, from which a bright future for the discipline can be predicted

    High-accuracy mass spectrometry based screening method for the discovery of cysteine containing peptides in animal venoms and toxins

    No full text
    Venom and toxin samples derived from animal origins are a rich source of bioactive peptides. A high proportion of bioactive peptides that have been identified in venom contain one or more disulfide bridges, which are thought to stabilize tertiary structure, and therefore influence the peptides’ specificity and activity. In this chapter, we describe a label-free mass spectrometry-based screening workflow specifically to detect peptides that contain inter- and intramolecular disulfide bonds, followed by elucidation of their primary structure. This method is based on the determination of the normalized isotope shift (NIS) and the normalized mass defect (NMD) of peptides, two parameters which are heavily influenced by the presence of sulfur in a peptide, where cysteines are the main contributing residues. Using ant defensive secretions as an example, we describe the initial fractionation of the venom on strong cation exchange followed by nanoflow HPLC and mass spectrometry. High resolution zoom scan spectra of high-abundance peptides are acquired, allowing an accurate determination of both monoisotopic and average mass, which are essential for calculation of NMD and NIS. Candidate peptides exhibiting relative low NMD and high NIS values are selected for targeted de novo sequencing. By fine-tuning the collision energy for optimal fragmentation of each selected precursor ions, the full sequence of several novel inter- and intramolecular disulfide bond containing ant defensive peptides can be established

    Data from: High throughput techniques to reveal the molecular physiology and evolution of digestion in spiders

    No full text
    Background: Spiders are known for their predatory efficiency and for their high capacity of digesting relatively large prey. They do this by combining both extracorporeal and intracellular digestion. Whereas many high throughput (“-omics”) techniques focus on biomolecules in spider venom, so far this approach has not yet been applied to investigate the protein composition of spider midgut diverticula (MD) and digestive fluid (DF). Results: We here report on our investigations of both MD and DF of the spider Nephilingis (Nephilengys) cruentata through the use of next generation sequencing and shotgun proteomics. This shows that the DF is composed of a variety of hydrolases including peptidases, carbohydrases, lipases and nuclease, as well as of toxins and regulatory proteins. We detect 25 astacins in the DF. Phylogenetic analysis of the corresponding transcript(s) in Arachnida suggests that astacins have acquired an unprecedented role for extracorporeal digestion in Araneae, with different orthologs used by each family. The results of a comparative study of spiders in distinct physiological conditions allow us to propose some digestion mechanisms in this interesting animal taxon. Conclusion: All the high throughput data allowed the demonstration that DF is a secretion originating from the MD. We identified enzymes involved in the extracellular and intracellular phases of digestion. Besides that, data analyses show a large gene duplication event in Araneae digestive process evolution, mainly of astacin genes. We were also able to identify proteins expressed and translated in the digestive system, which until now had been exclusively associated to venom glands
    corecore