8 research outputs found

    Molecular basis of sugar recognition by collectin-K1 and the effects of mutations associated with 3MC syndrome

    Get PDF
    Background Collectin-K1 (CL-K1, or CL-11) is a multifunctional Ca2+-dependent lectin with roles in innate immunity, apoptosis and embryogenesis. It binds to carbohydrates on pathogens to activate the lectin pathway of complement and together with its associated serine protease MASP-3 serves as a guidance cue for neural crest development. High serum levels are associated with disseminated intravascular coagulation, where spontaneous clotting can lead to multiple organ failure. Autosomal mutations in the CL-K1 or MASP-3 genes cause a developmental disorder called 3MC (Carnevale, Mingarelli, Malpuech and Michels) syndrome, characterised by facial, genital, renal and limb abnormalities. One of these mutations (Gly204Ser in the CL-K1 gene) is associated with undetectable levels of protein in the serum of affected individuals. Results In this study, we show that CL-K1 primarily targets a subset of high-mannose oligosaccharides present on both self- and non-self structures, and provide the structural basis for its ligand specificity. We also demonstrate that three disease-associated mutations prevent secretion of CL-K1 from mammalian cells, accounting for the protein deficiency observed in patients. Interestingly, none of the mutations prevent folding nor oligomerization of recombinant fragments containing the mutations in vitro. Instead, they prevent Ca2+ binding by the carbohydrate-recognition domains of CL-K1. We propose that failure to bind Ca2+ during biosynthesis leads to structural defects that prevent secretion of CL-K1, thus providing a molecular explanation of the genetic disorder. Conclusions We have established the sugar specificity of CL-K1 and demonstrated that it targets high-mannose oligosaccharides on self- and non-self structures via an extended binding site which recognises the terminal two mannose residues of the carbohydrate ligand. We have also shown that mutations associated with a rare developmental disorder called 3MC syndrome prevent the secretion of CL-K1, probably as a result of structural defects caused by disruption of Ca2+ binding during biosynthesis

    Robo2-Slit1 dependent cell-cell interactions mediate assembly of the trigeminal ganglion

    Get PDF
    Vertebrate cranial sensory ganglia, responsible for sensation of touch, taste and pain in the face and viscera, are composed of both ectodermal placode and neural crest cells. The cellular and molecular interactions allowing generation of complex ganglia remain unknown. Here, we show that proper formation of the trigeminal ganglion, the largest of the cranial ganglia, relies on reciprocal interactions between placode and neural crest cells in chick, as removal of either population resulted in severe defects. We demonstrate that ingressing placode cells express the Robo2 receptor and early migrating cranial neural crest cells express its cognate ligand Slit1. Perturbation of this receptor-ligand interaction by blocking Robo2 function or depleting either Robo2 or Slit1 using RNA interference disrupted proper ganglion formation. The resultant disorganization mimics the effects of neural crest ablation. Thus, our data reveal a novel and essential role for Robo2-Slit1 signaling in mediating neural crest–placode interactions during trigeminal gangliogenesis

    Crystal structures of a dual coenzyme specific glyceraldehyde-3-phosphate dehydrogenase from the enteric pathogen Campylobacter jejuni

    No full text
    Campylobacter jejuni is a pathogenic bacteria that causes gastrointestinal disorders and is thus of great importance. Phosphorylating Glyceraldehyde 3-phosphate dehydrogenase (GAPDH) is a ubiquitous cellular enzyme that has a well-defined role in glycolysis and other pathways where it catalyses the oxidative phosphorylation of glyceraldehyde 3-phosphate (2-hydroxy-3-oxopropyl dihydrogen phosphate) to 1,3-Bisphosphoglycerate ((2-Hydroxy-3-phosphonooxy-propanoyloxy)phosphonic acid). The C. jejuni genome encodes a single GAPDH enzyme (CjGAPDH) which displays dual (NAD/NADP) coenzyme specificity. NAD-specific GAPDHs are given the EC classification of 1.2.1.12, whereas NADP-specific GAPDHs are classed as 1.2.1.13. GAPDH's with dual specificity are in the class 1.2.1.59. Here we present the X-ray crystal structure of this enzyme (at 2.25 Å), this comprises superimposed structures of NAD- and NADP- complexes showing the structural adaptation that allows this dual specificity, and we consider this in the context of the pathogen's metabolism. There are no previous reports of EC 1.2.1.59 structures that compare the binding of the two co-enzymes. Furthermore, we also report the structure (at 2.05 Å) of the enzyme complexed with the nucleoside ADP and consider this with respect to the reported “moonlighting” activities of GAPDH

    The Role of Serine 167 in Human Indoleamine 2,3-Dioxygenase: A Comparison with Tryptophan 2,3-Dioxygenase

    No full text
    The initial step in the L-kynurenine pathway is oxidation of L-tryptophan to N-formylkynurenine and is catalyzed by one of two heme enzymes, tryptophan 2,3-dioxygenase (TDO) or indoleamine 2,3-dioxygenase (IDO). Here, we address the role of the conserved active site Ser167 residue in human IDO (S167A and S167H variants), which is replaced with a histidine in other mammalian and bacterial TDO enzymes. Our kinetic and spectroscopic data for S167A indicate that this residue is not essential for O2 or substrate binding, and we propose that hydrogen bond stabilization of the catalytic ferrous-oxy complex involves active site water molecules in IDO. The data for S167H show that the ferrous-oxy complex is dramatically destabilized in this variant, which is similar to the behavior observed in human TDO [Basran et al. (2008) Biochemistry 47, 4752-4760], and that this destabilization essentially destroys catalytic activity. New kinetic data for the wild-type enzyme also identify the ternary [enzyme-O2-substrate] complex. The data reveal significant differences between the IDO and TDO enzymes, and the implications of these results are discussed in terms of our current understanding of IDO and TDO catalysis. © 2008 American Chemical Society

    Cardiovascular Activity

    No full text

    Enzyme Handbook

    No full text
    corecore