606 research outputs found

    Chronic Stress Produces Persistent Increases in Plasma Corticosterone, Reductions in Brain and Cardiac Nitric Oxide Production, and Delayed Alterations in Endothelial Function in Young Prehypertensive Rats

    Get PDF
    This study was designed to investigate whether oxidative stress, nitric oxide (NO) deficiency and/or endothelial dysfunction (ED) are present in young borderline hypertensive rats (BHR) and whether these pathologies can be causally involved in the initiation of blood pressure (BP) increases. Additionally, we tested the hypothesis that crowding stress, experienced during the peripubertal period, may produce persistent or delayed disorders in corticosterone release, NO synthesis, oxidative status and/or endothelial function that could accelerate BP increases. To test these hypotheses, 5-week-old male BHR and normotensive Wistar-Kyoto rats (WKY) were either kept in control conditions (for 2 and 4 weeks, respectively) or exposed to social stress produced by crowding for 2 weeks (stress). After cessation of crowding, a group of rats of each phenotype was kept in control conditions for the next 2 weeks (post-stress). Systolic BP of 5-week-old BHR was significantly increased vs. age-matched WKY (127 ± 3 vs. 104 ± 3 mmHg, p < 0.01) and remained significantly higher throughout the course of the experiment. Despite elevated BP, no signs of oxidative damage to plasma lipids, NO deficiency or ED were observed in control BHR vs. age-matched WKY. Crowding stress elevated plasma corticosterone and accelerated BP increases only in BHR; these effects persisted 2 weeks post-stress. Crowding failed to induce oxidative damage to plasma lipids in either phenotype, but it produced persistent decreases in NO production in the hypothalamus and brainstem of both strains of rats, as well as in the hearts of BHR. In contrast, crowding failed to reduce NO production in the aortae or acetylcholine-induced relaxations of the femoral arteries in both strains investigated. However, significantly reduced aortic NO production was observed in BHR 2 weeks post-stress vs. age-matched controls, which was in agreement with reduced NO-dependent components of vasorelaxation. In conclusion, this study’s data showed that oxidative stress, NO deficiency and ED are not causally involved in initiation of blood pressure increase in BHR. However, exposure to stressful environments produced persistent increases in plasma corticosterone and reductions of brain and cardiac NO production followed by a delayed decrease in the NO-dependent component of endothelium-dependent relaxation—changes that collectively accelerated BP increases only in BHR

    Almost one year of TROPOMI/S5P total ozone column data: global ground-based validation

    Get PDF
    Póster presentado en: ATMOS 2018, celebrado en Salzburgo (Austria) del 26 al 29 de noviembre de 2018.In this work we present the validation results of almost one year of TROPOMI Near Real Time (NRTI) and OFFLine (OFFL) data against ground-based quality-assured Brewer and Dobson total ozone column (TOC) measurements deposited in the World Ozone and Ultraviolet Radiation Data Center (WOUDC). Additionally, comparisons to Brewer measurements from the European Brewer Network (EUBREWNET) and the Canadian Network are performed, as well as to twilight zenith-sky measurements obtained with ZSL-DOAS (Zenith Scattered Light Differential Optical Absorption Spectroscopy) instruments, that form part of the SAOZ network (Système d'Analyse par Observation Zénitale) of the Network for the Detection of Atmospheric Composition Change (NDACC). Through the comparison of the TROPOMI measurements to the total ozone ground-based measurements from stations that are distributed globally, as the background truth, the dependence of the new instrument on latitude, cloud properties, solar zenith and viewing angles, among others, is examined. Validation results show that the mean bias and the standard deviation of the percentage difference between TROPOMI and QA ground TOC meet the product requirements

    TROPOMI/S5P total ozone column data: global ground-based validation and consistency with other satellite missions

    Get PDF
    In this work, the TROPOMI near real time (NRTI) and offline (OFFL) total ozone column (TOC) products are presented and compared to daily ground-based quality-assured Brewer and Dobson TOC measurements deposited in the World Ozone and Ultraviolet Radiation Data Centre (WOUDC). Additional comparisons to individual Brewer measurements from the Canadian Brewer Network and the European Brewer Network (Eubrewnet) are performed. Furthermore, twilight zenith-sky measurements obtained with ZSL-DOAS (Zenith Scattered Light Differential Optical Absorption Spectroscopy) instruments, which form part of the SAOZ network (Système d'Analyse par Observation Zénitale), are used for the validation. The quality of the TROPOMI TOC data is evaluated in terms of the influence of location, solar zenith angle, viewing angle, season, effective temperature, surface albedo and clouds. For this purpose, globally distributed ground-based measurements have been utilized as the background truth. The overall statistical analysis of the global comparison shows that the mean bias and the mean standard deviation of the percentage difference between TROPOMI and ground-based TOC is within 0 –1.5 % and 2.5 %–4.5 %, respectively. The mean bias that results from the comparisons is well within the S5P product requirements, while the mean standard deviation is very close to those limits, especially considering that the statistics shown here originate both from the satellite and the ground-based measurements.This research has been supported by the European Space Agency “Preparation and Operations of the Mission Performance Centre (MPC) for the Copernicus Sentinel-5 Precursor Satellite” (contract no. 4000117151/16/1-LG)

    The Role of Perivascular Adipose Tissue in Early Changes in Arterial Function during High-Fat Diet and Its Combination with High-Fructose Intake in Rats

    No full text
    The aim of the current study was to evaluate the influence of a high-fat diet and its combination with high-fructose intake on young normotensive rats, with focus on the modulatory effect of perivascular adipose tissue (PVAT) on the reactivity of isolated arteries. Six-week-old Wistar–Kyoto rats were treated for 8 weeks with a control diet (10% fat), a high-fat diet (HFD; 45% fat), or a combination of the HFD with a 10% solution of fructose. Contractile and relaxant responses of isolated rat arteries, with preserved and removed PVAT for selected vasoactive stimuli, were recorded isometrically by a force displacement transducer. The results demonstrated that, in young rats, eight weeks of the HFD might lead to body fat accumulation and early excitation of the cardiovascular sympathetic nervous system, as shown by increased heart rate and enhanced arterial contractile responses induced by endogenous noradrenaline released from perivascular sympathetic nerves. The addition of high-fructose intake deteriorated this state by impairment of arterial relaxation and resulted in mild elevation of systolic blood pressure; however, the increase in arterial neurogenic contractions was not detected. The diet-induced alterations in isolated arteries were observed only in the presence of PVAT, indicating that this structure is important in initiation of early vascular changes during the development of metabolic syndrome

    Regulatory Role of Nitric Oxide in Civilisation Diseases, Slovak Academy of Sciences,

    No full text
    Short-term administration of Alibernet red wine extract failed to affect blood pressure and to improve endothelial function in young normotensive and spontaneously hypertensive rat

    Genotype-Related Effect of Crowding Stress on Blood Pressure and Vascular Function in Young Female Rats

    No full text
    This study investigated the influence of chronic crowding stress on nitric oxide (NO) production, vascular function and oxidative status in young Wistar-Kyoto (WKY), borderline hypertensive (BHR) and spontaneously hypertensive (SHR) female rats. Five-week old rats were exposed to crowding for two weeks. Crowding elevated plasma corticosterone (P<0.05) and accelerated BP (P<0.01 versus basal) only in BHR. NO production and superoxide concentration were significantly higher in the aortas of control BHR and SHR versus WKY. Total acetylcholine (ACh)-induced relaxation in the femoral artery was reduced in control SHR versus WKY and BHR, and stress did not affect it significantly in any genotype. The attenuation of ACh-induced relaxation in SHR versus WKY was associated with reduction of its NO-independent component. Crowding elevated NO production in all strains investigated but superoxide concentration was increased only in WKY, which resulted in reduced NO-dependent relaxation in WKY. In crowded BHR and SHR, superoxide concentration was either unchanged or reduced, respectively, but NO-dependent relaxation was unchanged in both BHR and SHR versus their respective control group. This study points to genotype-related differences in stress vulnerability in young female rats. The most pronounced negative influence of stress was observed in BHR despite preserved endothelial function

    Preliminary Findings on the Effect of Ultrasmall Superparamagnetic Iron Oxide Nanoparticles and Acute Stress on Selected Markers of Oxidative Stress in Normotensive and Hypertensive Rats

    No full text
    Several studies have reported that the administration of various nanoparticles in vivo can cause oxidative stress. The combination of ultrasmall superparamagnetic iron oxide nanoparticles (USPIONs) and acute stress was selected because, during intravenous application of a contrast agent, patients are exposed to psycho-emotional stress. This study was designed to investigate the effect of acute stress and USPIONs on selected markers of oxidative stress (antioxidant capacity, superoxide dismutase, glutathione peroxidase and catalase activities, levels of advanced oxidation protein products, protein carbonyls, lipoperoxides and 8-isoprostanes) in plasma and erythrocytes in normotensive Wistar&ndash;Kyoto rats (WKY) and spontaneously hypertensive rats (SHR). In the WKY and SHR groups, there was a significant main effect of genotype between groups on studied markers except protein carbonyls and lipoperoxides. In SHR, the combination of acute stress and USPIONs increased the antioxidant capacity of plasma and the selected enzyme activities of erythrocytes. In WKY, the combination of acute stress and USPIONs decreased the antioxidant capacity of erythrocytes and reduced levels of advanced oxidation protein products in plasma. Our study points to the fact that, when hypertensive subjects are treated with iron oxide nanoparticles, caution should be taken, especially in stress conditions, since they seem to be more vulnerable to oxidative stress produced by USPIONs

    Preliminary Findings on the Effect of Ultrasmall Superparamagnetic Iron Oxide Nanoparticles and Acute Stress on Selected Markers of Oxidative Stress in Normotensive and Hypertensive Rats

    No full text
    Several studies have reported that the administration of various nanoparticles in vivo can cause oxidative stress. The combination of ultrasmall superparamagnetic iron oxide nanoparticles (USPIONs) and acute stress was selected because, during intravenous application of a contrast agent, patients are exposed to psycho-emotional stress. This study was designed to investigate the effect of acute stress and USPIONs on selected markers of oxidative stress (antioxidant capacity, superoxide dismutase, glutathione peroxidase and catalase activities, levels of advanced oxidation protein products, protein carbonyls, lipoperoxides and 8-isoprostanes) in plasma and erythrocytes in normotensive Wistar–Kyoto rats (WKY) and spontaneously hypertensive rats (SHR). In the WKY and SHR groups, there was a significant main effect of genotype between groups on studied markers except protein carbonyls and lipoperoxides. In SHR, the combination of acute stress and USPIONs increased the antioxidant capacity of plasma and the selected enzyme activities of erythrocytes. In WKY, the combination of acute stress and USPIONs decreased the antioxidant capacity of erythrocytes and reduced levels of advanced oxidation protein products in plasma. Our study points to the fact that, when hypertensive subjects are treated with iron oxide nanoparticles, caution should be taken, especially in stress conditions, since they seem to be more vulnerable to oxidative stress produced by USPIONs

    Pioglitazone restores phosphorylation of downregulated caveolin-1 in right ventricle of monocrotaline-induced pulmonary hypertension

    No full text
    Background Caveolin-1 (cav-1) plays a role in pulmonary arterial hypertension (PAH). Monocrotaline (MCT)-induced PAH is characterized by a loss of cav-1 in pulmonary arteries; however, less is known regarding its role in the hypertrophied right ventricle (RV). We aimed to characterize the role of cav-1 and Hsp90 in the RV of MCT-induced PAH and their impact on endothelial nitric oxide synthase (eNOS). Additionally, we focused on restoration of cav-1 expression with pioglitazone administration. Methods Male 12-week-old Wistar rats were injected subcutaneously with monocrotaline (60 mg/kg). Selected proteins (cav-1, eNOS, pSer1177eNOS, Hsp90) and mRNAs (cav-1α, cav-1β, eNOS) were determined in the RV and left ventricle (LV) 4 weeks later. In a separate MCT-induced PAH study, pioglitazone (10 mg/kg/d, orally) administration started on day 14 after MCT. Results MCT induced RV hypertrophy and lung enlargement. Cav-1 and pTyr14cav-1 were decreased in RV. Caveolin-1α (cav-1α) and caveolin-1β (cav-1β) mRNAs were decreased in both ventricles. Hsp90 protein was increased in RV. eNOS and pSer1177eNOS proteins were unchanged in the ventricles. eNOS mRNA was reduced in RV. Pioglitazone treatment increased oxygen saturation and pTyr14cav-1 vs. MCT group. Conclusions Restoration of pTyr14cav-1 did not lead to amelioration of the disease, nor did it prevent RV hypertrophy and fibrosis, which was indicated by an increase in Acta2, Nppb, Col3a1, and Tgfβ1 mRNA
    corecore