23 research outputs found

    Considerations About Bi and Pb in the Crystal Structure of Cu-Bearing Tourmaline

    No full text
    Copper- and Mn-bearing elbaitic tourmaline (“Paraíba tourmaline”) sometimes contains significant amounts of Pb and Bi. Their position in the tourmaline crystal structure was studied with correlation analysis and bond valence calculations. Correlations between the F content and the X-site charge allow predicting the X-site occupancy. Three sets of tourmaline analyses were studied: (1) Pb-rich tourmalines from the Minh Tien pegmatite, Vietnam; (2) Cu-, Pb- and Bi-bearing tourmalines from the Mulungu mine, Brazil; (3) Cu- and Bi-bearing tourmalines from the Alto dos Quintos mine, Brazil. Two correlations were plotted: (1) the charge by considering only Na1+, Ca2+ and K1+; (2) the charge by adding Pb2+ and Bi3+ to the X-site charge. When plotting correlations for the Minh Tien tourmalines, the correlation significantly improves by adding Pb2+ to the X site. For the Alto dos Quintos tourmalines, only a slight increase of the correlation coefficient is observed, while such a correlation for tourmalines from Mulungu interestingly shows a slight decrease of the correlation coefficient. Bond valence calculations revealed that Bi3+ and Pb2+ can indeed occupy the X site via BiLi(NaAl)−1, PbLi(NaCu)−1 and possibly PbCu(NaAl)−1 substitutions as seen in the investigated tourmaline samples. At the Y site, Pb4+ can be substituted via PbLi(AlCu)−1, and PbVO(AlVOH)−1, while Bi5+ does not have any stable arrangement in Cu-bearing fluor-elbaite. The occurrence of Pb4+ at the Y site could be one explanation for the results of the correlations of the Mulungu tourmalines. Another explanation could be that during the tourmaline crystallization some additional Bi and Pb came into the pegmatitic system and hence disturbed the correlation between the average X-site charge and the F content. Further plots of such correlations in “Paraíba tourmaline” samples might also help to distinguish between the worldwide localities of these rare and sought-after tourmalines

    The Site Occupancy Assessment in Beryl Based on Bond-Length Constraints

    No full text
    The site preference for each cation and site in beryl based on bond-length calculations was determined and compared with analytical data. Tetrahedral SiO4 six-membered rings normally have no substitutions which results from very compact Si4+–O bonds in tetrahedra. Any substitution except Be would require significant tetrahedral ring distortion. The Be tetrahedron should also be negligibly substituted based on the bond-valence calculation; the tetrahedral Li–O bond length is almost 20% larger than Be2+–O. Similar or smaller bond lengths were calculated for Cr3+, V3+, Fe3+, Fe2+, Mn3+, Mg2+, and Al3+, which can substitute for Be but also can occupy a neighboring tetrahedrally coordinated site which is completely vacant in the full Be occupancy. The octahedral site is also very compressed due to dominant Al with short bond lengths; any substitution results in octahedron expansion. There are two channel sites in beryl: the smaller 2b site can be occupied by Na+, Ca2+, Li+, and REE3+ (Rare Earth Elements); Fe2+ and Fe3+ are too small; K+, Cs+, Rb+, and Ba2+ are too large. The channel 2a-site average bond length is 3.38 Å which allows the presence of simple molecules such as H2O, CO2, or NH4 and the large-sized cations-preferring Cs+

    Metamorphic Conditions of Neotethyan Meliatic Accretionary Wedge Estimated by Thermodynamic Modelling and Geothermobarometry (Inner Western Carpathians)

    No full text
    Metamorphic evolution of an accretionary wedge can be constrained by a reconstructed P–T conditions of the oceanic and continental margin fragments. This paper deals with the metamorphic overprinting of the Inner Western Carpathians (IWC) Meliatic Triassic–Jurassic paleotectonic units after the closure of the Neotethyan Meliata Basin. Medium to high-pressure and lower temperature conditions were estimated by Perple_X pseudosection modelling, combined with garnet–phengite, calcite–dolomite and chlorite thermometers and chlorite–phengite and phengite barometers. The Late Jurassic subductional burial to a maximum 50 km depth was estimated from the Bôrka Unit continental margin fragments at 520 °C and 1.55 GPa. This is compatible with the metamorphic peak garnet–glaucophane–phengite assemblage of blueschist facies in metabasites. The Jaklovce Unit oceanic fragments were subducted to maximum 35–40 km at 390–420 °C and 1.1–1.3 GPa. Metabasalts and metadolerites contain winchite, riebeckite, actinolite, chlorite, albite, epidote and phengite. A glaucophane-bearing metabasalt recorded an intra-oceanic subduction in blueschist-facies conditions. Rare amphibolite-facies metabasalts of this unit indicate the base of an inferred oceanic crust sliver obducted onto the continental margin wedge. The Meliata Unit oceanic/continental margin flysch calciclastic and siliciclastic metasediments suggest the burial to approximately 15–20 km at 250–350 °C and 0.4–0.6 GPa. This is indicated by a newly formed albite, K-feldspar, illite–phengite and chlorite associated with quartz and/or calcite and dolomite in these rocks. Magnesio-hastingsite to magnesio-hornblende bearing metagabbro with newly formed metamorphic magnesio-riebeckite and actinolite is an inferred detached Meliatic block tectonically emplaced in a Permian salinar mélange in the Silica Nappe hanging wall. Reconstructed P–T paths indicate variable metamorphic conditions from the medium-pressure to high-pressure subduction of the Bôrka and Jaklovce units to the Meliata Unit shallow burial in an accretionary wedge during Late Jurassic to Early Cretaceous Meliaticum evolution. Mélange blocks of Meliaticum incorporate different juxtaposed Meliatic paleotectonic units exposed in nappe outliers overlying the IWC Gemeric and Veporic superunits

    Socio-economic changes in the borderlands of the Visegrad Group (V4) countries

    No full text
    Under the influence of globalization and state integration processes, the importance of a border as a barrier is gradually decreasing. Borderlands are still perceived as specific phenomena, however, not only in terms of historical development but especially in the context of their changing impact on the daily lives of their inhabitants. Along with EU enlargement, the de-bordering process has also become significant in many countries where the borderland played an important role in the past. These include the V4 countries, whose borderlands are the object of this research. In this article we analyze these areas on the basis of selected socio-economic indicators, with a focus on change in the period 2001-2011. As indicated by the Analysis of Variance, the results show the significantly differentiated development of the borderlands, in terms of the individual values of indicators both within the borderland of the EU member states, as well as along the external border of the EU.263

    Microlite-group minerals: tracers of complex post-magmatic evolution in beryl-columbite granitic pegmatites, Marsikov District, Bohemian Massif, Czech Republic

    No full text
    Microlite-group minerals occur as common replacement products after primary and secondary columbite-group minerals (CGM) in albitised blocky K-feldspar and in coarse-grained, muscovite-rich units of the Schinderhubel I, Scheibengraben and Bienergraben beryl-columbite pegmatites in the Marikov District (Silesian Unit, Bohemian Massif, Czech Republic). Textural and compositional variations of microlite-group minerals were examined using electron probe micro-analyses and microRaman spectroscopy (mu RS). A complex post-magmatic evolution of the pegmatites and the following microlite populations (Mic) and related processes were found: (1) precipitation of U, Na-rich and F-poor Mic I on cracks in CGM; (2) alteration of Mic I to U-rich together with Na- and F-poor Mic II; and (3) partial replacement of Mic I and II by Mic III with a distinct Na, U and Ti loss and Ca and F gain. Stage (2) includes an extensive leaching of Na, without U loss. The final stage (3) produced euhedral-to-subhedral oscillatory zoned Ca and F enriched Mic III with distinctly different composition to the previous F-poor and A-site vacant Mic II. Aggregates of fersmite are associated commonly with Mic III. Distal Mic IIId occurs locally on cracks in K-feldspar or quartz, with compositions analogous to Mic III. Compositional variations and textural features of microlite-group minerals during dissolution-reprecipitation processes serve as sensitive tracers of post-magmatic evolution in granitic pegmatites recording complex interactions between magmatic pegmatite units and externally derived, hydrothermal metamorphic fluids.Web of Science85574372

    Structural Breakdown of Natural Epidote and Clinozoisite in High-T and Low-P Conditions and Characterization of Its Products

    No full text
    A heat treatment was performed on selected epidote and clinozoisite crystals to establish the nature of any changes in the optical and crystal-chemical properties and to identify a breakdown product using a wide spectrum of analytical methods. Natural samples were heated from 900 to 1200 °C under atmospheric pressure in ambient oxidation conditions for 12 h. Epidote and clinozoisite were stable at 900 °C; those heated at 1000 °C, 1100 °C, and 1200 °C exhibited signs of breakdown, with the development of cracks and fissures. The average chemical composition of epidote is Ca2.000Al2.211Fe0.742Si2.994O12(OH), while that of clinozoisite is Ca2.017A12.626Fe0.319Si3.002O12(OH). The breakdown products identified by electron microanalysis, powder X-ray diffraction, Raman spectroscopy, and high-resolution transmission electron microscopy were anorthite, pyroxene compositionally close to esseneite, and wollastonite. The decomposition of the epidote-clinozoisite solid solution is controlled by the following reaction: 4 epidote/clinozoisite → 2 pyroxene + 2 wollastonite + 4 anorthite + 2 H2O. Pyroxene likely contains a significant proportion of tetrahedral Fe3+ as documented by the Mössbauer spectroscopy. Moreover, the presence of hematite in the Mössbauer spectrum of the clinozoisite sample heated at 1200 °C can result from the following reaction: 4 epidote → pyroxene + 3 wollastonite + 4 anorthite + hematite + 2 H2O

    Structural Breakdown of Natural Epidote and Clinozoisite in High-T and Low-P Conditions and Characterization of Its Products

    No full text
    A heat treatment was performed on selected epidote and clinozoisite crystals to establish the nature of any changes in the optical and crystal-chemical properties and to identify a breakdown product using a wide spectrum of analytical methods. Natural samples were heated from 900 to 1200 °C under atmospheric pressure in ambient oxidation conditions for 12 h. Epidote and clinozoisite were stable at 900 °C; those heated at 1000 °C, 1100 °C, and 1200 °C exhibited signs of breakdown, with the development of cracks and fissures. The average chemical composition of epidote is Ca2.000Al2.211Fe0.742Si2.994O12(OH), while that of clinozoisite is Ca2.017A12.626Fe0.319Si3.002O12(OH). The breakdown products identified by electron microanalysis, powder X-ray diffraction, Raman spectroscopy, and high-resolution transmission electron microscopy were anorthite, pyroxene compositionally close to esseneite, and wollastonite. The decomposition of the epidote-clinozoisite solid solution is controlled by the following reaction: 4 epidote/clinozoisite → 2 pyroxene + 2 wollastonite + 4 anorthite + 2 H2O. Pyroxene likely contains a significant proportion of tetrahedral Fe3+ as documented by the Mössbauer spectroscopy. Moreover, the presence of hematite in the Mössbauer spectrum of the clinozoisite sample heated at 1200 °C can result from the following reaction: 4 epidote → pyroxene + 3 wollastonite + 4 anorthite + hematite + 2 H2O

    THERMOMECHANICAL ANALYSIS OF ILLITE FROM FÜZÉRRADVÁNY

    No full text
    Young’s modulus of green illite from Füzérradvány (Hungary) was measured in-situ in the temperature interval 20 °C – 1100 °C and auxiliary analyses DTA, TG and TDA, XRD and EGA, were also performed. It was found that a removal of the physically bound water (20 °C – 250 °C) sets illite crystals closer which leads to a significant increase of Young’s modulus from its initial value of 7 GPa and reaches the maximum 12 GPa at 300 °C. Young’s modulus slightly decreases in the temperature interval of dehydroxylation of illite (300 °C – 800 °C), and which then reaches up to 45 GPa at 1100 °C, increasing exponentially as a consequence of the sintering above 800 °C.DOI: http://dx.doi.org/10.5755/j01.ms.21.3.7152</p

    Chrysoberyl and associated beryllium minerals resulting from metamorphic overprinting of the Maršíkov–Schinderhübel III pegmatite, Czech Republic

    No full text
    The Maršíkov–Schinderhübel III pegmatite in the Hrubý Jeseník Mountains, Silesian Domain, Czech Republic, is a classic example of chrysoberyl-bearing LCT granitic pegmatite of beryl–columbite subtype. This thin pegmatite dyke, (up to 1 m in thickness in biotite–amphibole gneiss is characterised by symmetrical internal zoning. Tabular and prismatic chrysoberyl crystals (≤3 cm) occur typically in the intermediate albite-rich unit and rarely in the quartz core. Chrysoberyl microtextures are quite complex; their crystals are irregularly patchy, concentric or fine oscillatory zoned with large variations in Fe content (1.1–5.3 wt.% Fe2O3; ≤0.09 apfu). Chrysoberyl compositions reveal dominant Fe3+ = Al3+ and minor Fe2+ + Ti4+ = 2(Al, Fe)3+ substitution mechanisms in the octahedral sites. Tin, Ga, and V (determined by LA-ICP-MS) are characteristic trace elements incorporated in the chrysoberyl structure, whereas anomalously high Ta and Nb concentrations (thousands ppm) in chrysoberyl are probably caused by nano- to micro-inclusions of Nb–Ta oxide minerals; especially columbite–tantalite. Textural relationships between associated minerals, distinct schistosity of the pegmatite parallel to the host gneiss foliation and fragmentation of the pegmatite body into blocks as a result of superimposed stress are clear evidence for deformation and metamorphic overprinting of the pegmatite. Primary magmatic beryl, albite and muscovite were transformed to chrysoberyl, fibrolitic sillimanite, secondary quartz and muscovite during a high-temperature (~600°C) and medium-pressure (~250–500 MPa) prograde metamorphic stage under amphibolite-facies conditions. A subsequent retrograde, low-temperature (~200–500°C) and pressure (≤250 MPa) metamorphic stage resulted in the local alteration of chrysoberyl to secondary Fe,Na-rich beryl, euclase, bertrandite and late muscovite.Web of Science87338136

    Petrology and dating of the Permian lamprophyres from the Malá Fatra Mts. (Western Carpathians, Slovakia)

    No full text
    Calc–alkaline lamprophyres are known from several localities in the Malá Fatra Mountains. They form dykes (0.5–3 m) of varying degree of alteration that have intruded the surrounding granitoid rocks which are often incorporated xenoliths. Clinopyroxenes (diopside to augite), amphiboles (kaersutitic), biotites (annite) and plagioclases are major primary minerals of the dykes, accessory minerals include apatite, ilmenite, rutile, pyrite, chalcopyrite, and pyrrhotite. Apatite has a relatively low F, but increased Cl content compared to typical apatite from lamprophyres or magmatic apatite from granitic rocks in the Western Carpathians. The chemical composition of the lamprophyres indicates their calc–alkaline character, but affinity to alkaline lamprophyres is suggested by the Ti enrichment in clinopyroxene, amphibole and biotite. According to modal classification of the minerals, the studied rocks correspond to spessartite. The differences in the chemical composition of the rocks (including Sr and Nd isotopes) probably result from the contamination of primary magma by crustal material during magma ascent. The age of the lamprophyres, based on U/Pb dating in apatite, is 263.4 ± 2.6 Ma
    corecore