1,174 research outputs found
Sequence-specific double-strand cleavage of DNA by penta-N-methylpyrrolecarboxamide-EDTA·Fe(II)
In the presence of O2 and 5 mM dithiothreitol, penta-N-methylpyrrolecarboxamide-EDTA·Fe(II) [P5E·Fe(II)] at 0.5 µ M cleaves pBR322 plasmid DNA (50 µ M in base pairs) on opposite strands to afford discrete DNA fragments as analyzed by agarose gel electrophoresis. High-resolution denaturing gel electrophoresis of a 32P-end-labeled 517-base-pair restriction fragment containing a major cleavage site reveals that P5E·Fe(II) cleaves 3-5 base pairs contiguous to a 6-base-pair sequence, 5'-T-T-T-T-T-A-3' (4,323-4,328 base pairs). The major binding orientation of the pentapeptide occurs with the amino terminus at the adenine side of this sequence. In the presence of 5 mM dithiothreitol, 0.01 µ M P5E·Fe(II) converts form I pBR322 DNA at 0.22 µ M plasmid (1.0 mM in base pairs) to 40% form II, indicating the cleavage reaction is catalytic, turning over a minimum of nine times. This synthetic molecule achieves double-strand cleavage of DNA (pH 7.9, 25 degrees C) at the 6-base-pair recognition level and may provide an approach to the design of "artificial restriction enzymes.
Density functional theory and DFT+U study of transition metal porphines adsorbed on Au(111) surfaces and effects of applied electric fields
We apply Density Functional Theory (DFT) and the DFT+U technique to study the
adsorption of transition metal porphine molecules on atomistically flat Au(111)
surfaces. DFT calculations using the Perdew-Burke-Ernzerhof (PBE) exchange
correlation functional correctly predict the palladium porphine (PdP) low-spin
ground state. PdP is found to adsorb preferentially on gold in a flat geometry,
not in an edgewise geometry, in qualitative agreement with experiments on
substituted porphyrins. It exhibits no covalent bonding to Au(111), and the
binding energy is a small fraction of an eV. The DFT+U technique, parameterized
to B3LYP predicted spin state ordering of the Mn d-electrons, is found to be
crucial for reproducing the correct magnetic moment and geometry of the
isolated manganese porphine (MnP) molecule. Adsorption of Mn(II)P on Au(111)
substantially alters the Mn ion spin state. Its interaction with the gold
substrate is stronger and more site-specific than PdP. The binding can be
partially reversed by applying an electric potential, which leads to
significant changes in the electronic and magnetic properties of adsorbed MnP,
and ~ 0.1 Angstrom, changes in the Mn-nitrogen distances within the porphine
macrocycle. We conjecture that this DFT+U approach may be a useful general
method for modeling first row transition metal ion complexes in a
condensed-matter setting.Comment: 14 pages, 6 figure
Photocleavage of the Polypeptide Backbone by 2-Nitrophenylalanine
SummaryPhotocleavage of the polypeptide backbone is potentially a powerful and general method to activate or deactivate functional peptides and proteins with high spatial and temporal resolution. Here we show that 2-nitrophenylalanine is able to photochemically cleave the polypeptide backbone by an unusual cinnoline-forming reaction. This unnatural amino acid was genetically encoded in E. coli, and protein containing 2-nitrophenylalanine was expressed and site-specifically photocleaved
Ethanol Injection of Ornamental Trees Facilitates Testing Insecticide Efficacy Against Ambrosia Beetles (Coleoptera: Curculionidae: Scolytinae)
Exotic ambrosia beetles are damaging pests in ornamental tree nurseries in North America. The species Xylosandrus crassiusculus (Motshulsky) and Xylosandrus germanus (Blandford) are especially problematic. Management of these pests relies on preventive treatments of insecticides. However, field tests of recommended materials on nursery trees have been limited because of unreliable attacks by ambrosia beetles on experimental trees. Ethanol-injection of trees was used to induce colonization by ambrosia beetles to evaluate insecticides and botanical formulations for preventing attacks by ambrosia beetles. Experiments were conducted in Ohio, Tennessee, and Virginia. Experimental trees injected with ethanol had more attacks by ambrosia beetles than un-injected control trees in all but one experiment. Xylosandrus crassiusculus and X. germanus colonized trees injected with ethanol. In most experiments, attack rates declined 8 d after ethanol-injection. Ethanol-injection induced sufficient pressure from ambrosia beetles to evaluate the efficacy of insecticides for preventing attacks. Trunk sprays of permethrin suppressed cumulative total attacks by ambrosia beetles in most tests. Trunk sprays of the botanical formulations Armorex and Veggie Pharm suppressed cumulative total attacks in Ohio. Armorex, Armorex + Permethrin, and Veggie Pharm + Permethrin suppressed attacks in Tennessee. The bifenthrin product Onyx suppressed establishment of X. germanus in one Ohio experiment, and cumulative total ambrosia beetle attacks in Virginia. Substrate drenches and trunk sprays of neonicotinoids, or trunk sprays of anthranilic diamides or tolfenpyrad were not effective. Ethanol-injection is effective for inducing attacks and ensuring pressure by ambrosia beetles for testing insecticide efficacy on ornamental trees
Year in review 2006: Critical Care – resource management
As health care resources become increasingly constrained, it is imperative that intensive care unit resources be optimized. In the years to come, a number of challenges to intensive care medicine will need to be addressed as society changes. Last year's Critical Care papers provided us with a number of interesting and highly accessed original papers dealing with health care resources. The information yielded by these studies can help us to deal with issues such as prognostication, early detection and treatment of delirium, prevention of medical errors and use of radiology resources in critically ill patients. Finally, several aspects of scientific research in critically ill patients were investigated, focusing on the possibility of obtaining informed consent and recall of having given informed consent
Movement of Xylosandrus germanus (Coleoptera: Curculionidae) in Ornamental Nurseries and Surrounding Habitats
Some exotic ambrosia beetles are damaging pests in ornamental nurseries. Xylosandrus germanus (Blandford) is the most problematic ambrosia beetle in Ohio nurseries. Movement of X. germanus in nurseries has not been characterized, and knowledge is lacking on whether infestations originate from within nurseries or surrounding habitats. Flight activity of X. germanus was monitored in nurseries and adjacent wooded areas to determine the source of beetles infesting nurseries, and characterize their movement within nurseries. Ethanol-baited bottle traps were positioned within wooded areas adjacent to commercial nurseries and within nurseries at various distances from the nursery woodlot interface. Flight activity of overwintered X. germanus occurred in wooded areas adjacent to nurseries before occurrence within nurseries. There was a direct relationship between degree-days and the distance from woodlots when X. germanus were first found in traps in spring, with earlier captures closest to wooded areas and latest ones furthest away into the nursery. X. germanus appeared to move into nurseries from adjacent wooded areas, with numbers trapped within nurseries decreasing with distance away from wooded areas. Trees in the interior of nurseries would appear to be subjected to less attack pressure than trees near the nursery border. Intercepting beetles as they move into nurseries might be an effective strategy to reduce attack pressure on valuable trees
Patient-specific image-based computer simulation for theprediction of valve morphology and calcium displacement after TAVI with the Medtronic CoreValve and the Edwards SAPIEN valve
AIMS:
Our aim was to validate patient-specific software integrating baseline anatomy and biomechanical properties of both the aortic root and valve for the prediction of valve morphology and aortic leaflet calcium displacement after TAVI.
METHODS AND RESULTS:
Finite element computer modelling was performed in 39 patients treated with a Medtronic CoreValve System (MCS; n=33) or an Edwards SAPIEN XT (ESV; n=6). Quantitative axial frame morphology at inflow (MCS, ESV) and nadir, coaptation and commissures (MCS) was compared between multislice computed tomography (MSCT) post TAVI and a computer model as well as displacement of the aortic leaflet calcifications, quantified by the distance between the coronary ostium and the closest calcium nodule. Bland-Altman analysis revealed a strong correlation between the observed (MSCT) and predicted frame dimensions, although small differences were detected for, e.g., Dmin at the inflow (mean±SD MSCT vs.
MODEL:
21.6±2.4 mm vs. 22.0±2.4 mm; difference±SD: -0.4±1.3 mm, p<0.05) and Dmax (25.6±2.7 mm vs. 26.2±2.7 mm; difference±SD: -0.6±1.0 mm, p<0.01). The observed and predicted calcium displacements were highly correlated for the left and right coronary ostia (R2=0.67 and R2=0.71, respectively p<0.001).
CONCLUSIONS:
Dedicated software allows accurate prediction of frame morphology and calcium displacement after valve implantation, which may help to improve outcome
Trap Tree and Interception Trap Techniques for Management of Ambrosia Beetles (Coleoptera: Curculionidae: Scolytinae) in Nursery Production Get access Arrow
The majority of wood-boring ambrosia beetles are strongly attracted to ethanol, a behavior which could be exploited for management within ornamental nurseries. A series of experiments was conducted to determine if ethanol-based interception techniques could reduce ambrosia beetle pest pressure. In two experiments, trap trees injected with a high dose of ethanol were positioned either adjacent or 10–15 m from trees injected with a low dose of ethanol (simulating a mildly stressed tree) to determine if the high-dose trap trees could draw beetle attacks away from immediately adjacent stressed nursery trees. The high-ethanol-dose trees sustained considerably higher attacks than the low-dose trees; however, distance between the low- and high-dose trees did not significantly alter attack rates on the low-dose trees. In a third experiment, 60-m length trap lines with varying densities of ethanol-baited traps were deployed along a forest edge to determine if immigrating beetles could be intercepted before reaching sentinel traps or artificially stressed sentinel trees located 10 m further in-field. Intercept trap densities of 2 or 4 traps per trap line were associated with fewer attacks on sentinel trees compared to no traps, but 7 or 13 traps had no impact. None of the tested intercept trap densities resulted in significantly fewer beetles reaching the sentinel traps. The evaluated ethanol-based interception techniques showed limited promise for reducing ambrosia beetle pressure on nursery trees. An interception effect might be enhanced by applying a repellent compound to nursery trees in a push–pull strategy
- …