100 research outputs found

    Gravitational wave detectors

    Get PDF
    The existence of gravitational radiation is a prediction of Einstein's general theory of relativity. Gravitational waves are perturbations in the curvature of spacetime caused by accelerated masses. Since the 1960s gravitational wave detectors have been built and constantly improved. The present-day generation of resonant mass antennas and laser interferometers has reached the necessary sensitivity to detect gravitational waves from sources in the Milky Way. Within a few years, the next generation of detectors will open the field of gravitational wave astronomy. © IOP Publishing Ltd and Deutsche Physikalische Gesellschaft

    Gravitationswellen — ein neues Fenster zum Universum

    Get PDF

    Gravitationswellen — ein neues Fenster zum Universum

    Get PDF

    Search for Gravitational Waves Associated with Gamma-Ray Bursts during the First Advanced LIGO Observing Run and Implications for the Origin of GRB 150906B

    Get PDF
    We present the results of the search for gravitational waves (GWs) associated with γ-ray bursts detected during the first observing run of the Advanced Laser Interferometer Gravitational-Wave Observatory (LIGO). We find no evidence of a GW signal for any of the 41 γ-ray bursts for which LIGO data are available with sufficient duration. For all γ-ray bursts, we place lower bounds on the distance to the source using the optimistic assumption that GWs with an energy of were emitted within the – Hz band, and we find a median 90% confidence limit of 71 Mpc at 150 Hz. For the subset of 19 short/hard γ-ray bursts, we place lower bounds on distance with a median 90% confidence limit of 90 Mpc for binary neutron star (BNS) coalescences, and 150 and 139 Mpc for neutron star–black hole coalescences with spins aligned to the orbital angular momentum and in a generic configuration, respectively. These are the highest distance limits ever achieved by GW searches. We also discuss in detail the results of the search for GWs associated with GRB 150906B, an event that was localized by the InterPlanetary Network near the local galaxy NGC 3313, which is at a luminosity distance of Mpc (z = 0.0124). Assuming the γ-ray emission is beamed with a jet half-opening angle , we exclude a BNS and a neutron star–black hole in NGC 3313 as the progenitor of this event with confidence >99%. Further, we exclude such progenitors up to a distance of 102 Mpc and 170 Mpc, respectively.United States National Science Foundation (NSF)Science and Technology Facilities Council (STFC) of the United KingdomMax-Planck-Society (MPS)State of NiedersachsenAustralian Research CouncilItalian Istituto Nazionale di Fisica Nucleare (INFN)French Centre National de la Recherche Scientifique (CNRS)Netherlands Organisation for Scientific ResearchCouncil of Scientific and Industrial Research of IndiaScience & Engineering Research Board (SERB), IndiaMinistry of Human Resource Development, IndiaSpanish Ministerio de Economía y CompetitividadConselleria d’Economia i CompetitivitatConselleria d’Educació Cultura i Universitats of the Govern de les Illes BalearsNational Science Centre of PolandEuropean CommissionRoyal SocietyScottish Funding CouncilScottish Universities Physics AllianceHungarian Scientific Research Fund (OTKA)Lyon Institute of Origins (LIO)National Research Foundation of KoreaIndustry CanadaProvince of OntarioBrazilian Ministry of ScienceFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Russian Foundation for Basic ResearchLeverhulme TrustMinistry of Science and Technology (MOST)Kavli FoundationNASA/NNX15AU74GRFBR/15-02-00532-iRFBR/16-29-13009-ofi-

    Observation of a kilogram-scale oscillator near its quantum ground state

    Get PDF
    We introduce a novel cooling technique capable of approaching the quantum ground state of a kilogram-scale system-an interferometric gravitational wave detector. The detectors of the Laser Interferometer Gravitational-wave Observatory (LIGO) operate within a factor of 10 of the standard quantum limit (SQL), providing a displacement sensitivity of 10(-18) m in a 100 Hz band centered on 150 Hz. With a new feedback strategy, we dynamically shift the resonant frequency of a 2.7 kg pendulum mode to lie within this optimal band, where its effective temperature falls as low as 1.4 mu K, and its occupation number reaches about 200 quanta. This work shows how the exquisite sensitivity necessary to detect gravitational waves can be made available to probe the validity of quantum mechanics on an enormous mass scale.United States National Science FoundationScience and Technology Facilities Council of the United KingdomMax-Planck-SocietyState of NiedersachsenAustralian Research CouncilCouncil of Scientific and Industrial Research of IndiaIstituto Nazionale di Fisica Nucleare of ItalySpanish Ministerio de Educacion y CienciaConselleria d’Economia Hisenda i Innovacio of the Govern de les Illes BalearsScottish Funding CouncilScottish Universities Physics AllianceNational Aeronautics and Space AdministrationCarnegie TrustLeverhulme TrustDavid and Lucile Packard FoundationResearch CorporationAlfred P. Sloan Foundatio

    Parameter estimation for compact binary coalescence signals with the first generation gravitational-wave detector network

    Get PDF
    Compact binary systems with neutron stars or black holes are one of the most promising sources for ground-based gravitational-wave detectors. Gravitational radiation encodes rich information about source physics; thus parameter estimation and model selection are crucial analysis steps for any detection candidate events. Detailed models of the anticipated waveforms enable inference on several parameters, such as component masses, spins, sky location and distance, that are essential for new astrophysical studies of these sources. However, accurate measurements of these parameters and discrimination of models describing the underlying physics are complicated by artifacts in the data, uncertainties in the waveform models and in the calibration of the detectors. Here we report such measurements on a selection of simulated signals added either in hardware or software to the data collected by the two LIGO instruments and the Virgo detector during their most recent joint science run, including a “blind injection” where the signal was not initially revealed to the collaboration. We exemplify the ability to extract information about the source physics on signals that cover the neutron-star and black-hole binary parameter space over the component mass range 1 M⊙–25 M⊙ and the full range of spin parameters. The cases reported in this study provide a snapshot of the status of parameter estimation in preparation for the operation of advanced detectors. © 2013 The American Physical Societ

    Constraints on cosmic strings from the ligo-virgo gravitational-wave detectors

    Get PDF
    Cosmic strings can give rise to a large variety of interesting astrophysical phenomena. Among them, powerful bursts of gravitational waves (GWs) produced by cusps are a promising observational signature. In this Letter we present a search for GWs from cosmic string cusps in data collected by the LIGO and Virgo gravitational wave detectors between 2005 and 2010, with over 625 days of live time. We find no evidence of GW signals from cosmic strings. From this result, we derive new constraints on cosmic string parameters, which complement and improve existing limits from previous searches for a stochastic background of GWs from cosmic microwave background measurements and pulsar timing data. In particular, if the size of loops is given by the gravitational backreaction scale, we place upper limits on the string tension Gμ below 10−8 in some regions of the cosmic string parameter space. © 2014 The American Physical Societ

    First all-sky search for continuous gravitational waves from unknown sources in binary systems

    Get PDF
    We present the first results of an all-sky search for continuous gravitational waves from unknown spinning neutron stars in binary systems using LIGO and Virgo data. Using a specially developed analysis program, the TwoSpect algorithm, the search was carried out on data from the sixth LIGO science run and the second and third Virgo science runs. The search covers a range of frequencies from 20 Hz to 520 Hz, a range of orbital periods from 2 to ∼2,254  h and a frequency- and period-dependent range of frequency modulation depths from 0.277 to 100 mHz. This corresponds to a range of projected semimajor axes of the orbit from ∼0.6×10−3  ls to ∼6,500  ls assuming the orbit of the binary is circular. While no plausible candidate gravitational wave events survive the pipeline, upper limits are set on the analyzed data. The most sensitive 95% confidence upper limit obtained on gravitational wave strain is 2.3×10−24 at 217 Hz, assuming the source waves are circularly polarized. Although this search has been optimized for circular binary orbits, the upper limits obtained remain valid for orbital eccentricities as large as 0.9. In addition, upper limits are placed on continuous gravitational wave emission from the low-mass x-ray binary Scorpius X-1 between 20 Hz and 57.25 Hz. © 2014 The American Physical Societ

    Search for gravitational radiation from intermediate mass black hole binaries in data from the second LIGO-Virgo joint science run

    Get PDF
    This paper reports on an unmodeled, all-sky search for gravitational waves from merging intermediate mass black hole binaries (IMBHB). The search was performed on data from the second joint science run of the LIGO and Virgo detectors (July 2009–October 2010) and was sensitive to IMBHBs with a range up to ∼200  Mpc, averaged over the possible sky positions and inclinations of the binaries with respect to the line of sight. No significant candidate was found. Upper limits on the coalescence-rate density of nonspinning IMBHBs with total masses between 100 and 450  M⊙ and mass ratios between 0.25 and 1 were placed by combining this analysis with an analogous search performed on data from the first LIGO-Virgo joint science run (November 2005–October 2007). The most stringent limit was set for systems consisting of two 88  M⊙ black holes and is equal to 0.12  Mpc−3 Myr−1 at the 90% confidence level. This paper also presents the first estimate, for the case of an unmodeled analysis, of the impact on the search range of IMBHB spin configurations: the visible volume for IMBHBs with nonspinning components is roughly doubled for a population of IMBHBs with spins aligned with the binary’s orbital angular momentum and uniformly distributed in the dimensionless spin parameter up to 0.8, whereas an analogous population with antialigned spins decreases the visible volume by ∼20%. © 2014 The American Physical Societ

    Search for gravitational wave ringdowns from perturbed intermediate mass black holes in LIGO-Virgo data from 2005-2010

    Get PDF
    We report results from a search for gravitational waves produced by perturbed intermediate mass black holes (IMBH) in data collected by LIGO and Virgo between 2005 and 2010. The search was sensitive to astrophysical sources that produced damped sinusoid gravitational wave signals, also known as ringdowns, with frequency 50≤f0/Hz≤2000 and decay timescale 0.0001≲τ/s≲0.1 characteristic of those produced in mergers of IMBH pairs. No significant gravitational wave candidate was detected. We report upper limits on the astrophysical coalescence rates of IMBHs with total binary mass 50≤M/M⊙≤450 and component mass ratios of either 1:1 or 4:1. For systems with total mass 100≤M/M⊙≤150, we report a 90% confidence upper limit on the rate of binary IMBH mergers with nonspinning and equal mass components of 6.9×10−8  Mpc−3 yr−1. We also report a rate upper limit for ringdown waveforms from perturbed IMBHs, radiating 1% of their mass as gravitational waves in the fundamental, ℓ=m=2, oscillation mode, that is nearly three orders of magnitude more stringent than previous results. © 2014 The American Physical Societ
    corecore