64 research outputs found

    Electro-optic dual-comb interferometry over 40-nm bandwidth

    Full text link
    Dual-comb interferometry is a measurement technique that uses two laser frequency combs to retrieve complex spectra in a line-by-line basis. This technique can be implemented with electro-optic frequency combs, offering intrinsic mutual coherence, high acquisition speed and flexible repetition-rate operation. A challenge with the operation of this kind of frequency comb in dual-comb interferometry is its limited optical bandwidth. Here, we use coherent spectral broadening and demonstrate electro-optic dual-comb interferometry over the entire telecommunications C band (200 lines covering ~ 40 nm, measured within 10 microseconds at 100 signal-to-noise ratio per spectral line). These results offer new prospects for electro-optic dual-comb interferometry as a suitable technology for high-speed broadband metrology, for example in optical coherence tomography or coherent Raman microscopy

    Tunable superlattice p-i-n photodetectors: characteristics, theory, and application

    Get PDF
    Extended measurements and theory on the recently developed monolithic wavelength demultiplexer consisting of voltage-tunable superlattice p-i-n photodetectors in a waveguide confirmation are discussed. It is shown that the device is able to demultiplex and detect two optical signals with a wavelength separation of 20 nm directly into different electrical channels at a data rate of 1 Gb/s and with a crosstalk attenuation varying between 20 and 28 dB, depending on the polarization. The minimum acceptable crosstalk attenuation at a data rate of 100 Mb/s is determined to be 10 dB. The feasibility of using the device as a polarization angle sensor for linearly polarized light is also demonstrated. A theory for the emission of photogenerated carriers out of the quantum wells is included, since this is potentially a speed limiting mechanism in these detectors. It is shown that a theory of thermally assisted tunneling by polar optical phonon interaction is able to predict emission times consistent with the observed temporal response

    Impact of 4D channel distribution on the achievable rates in coherent optical communication experiments

    Get PDF
    We experimentally investigate mutual information and generalized mutual information for coherent optical transmission systems. The impact of the assumed channel distribution on the achievable rate is investigated for distributions in up to four dimensions. Single channel and wavelength division multiplexing (WDM) transmission over transmission links with and without inline dispersion compensation are studied. We show that for conventional WDM systems without inline dispersion compensation, a circularly symmetric complex Gaussian distribution is a good approximation of the channel. For other channels, such as with inline dispersion compensation, this is no longer true and gains in the achievable information rate are obtained by considering more sophisticated four-dimensional (4D) distributions. We also show that for nonlinear channels, gains in the achievable information rate can also be achieved by estimating the mean values of the received constellation in four dimensions. The highest gain for such channels is seen for a 4D correlated Gaussian distribution

    One photon-per-bit receiver using near-noiseless phase-sensitive amplification

    Get PDF
    Noise fundamentally limits the capacity and reach in all communication links. In optical space communications, noise primarily originates from the detection process and limits the signal fidelity. . Therefore, the receiver sensitivity plays a key role, dictating the minimum power needed to recover the information transmitted. The widely explored approach of using the pulse-position modulation format trades-off sensitivity against receiver bandwidth and thus data-rate. Here we report on a novel, spectrally efficient, approach based on a coherent receiver with a near-noiseless phase-sensitive pre-amplifier operating at room temperature and demonstrate a sensitivity of one photon-per-bit of incident power at a data rate of 10 Gb/s. The results provide a path to future high-capacity inter-satellite and deep space, and other free-space communication linksComment: 12 pages, 3 figure

    Optical bandgap engineering in nonlinear silicon nitride waveguides

    Get PDF
    Silicon nitride is awell-established material for photonic devices and integrated circuits. It displays a broad transparency window spanning from the visible to the mid-IR and waveguides can be manufactured with low losses. An absence of nonlinear multi-photon absorption in the erbium lightwave communications band has enabled various nonlinear optic applications in the past decade. Silicon nitride is a dielectric material whose optical and mechanical properties strongly depend on the deposition conditions. In particular, the optical bandgap can be modified with the gas flow ratio during low-pressure chemical vapor deposition (LPCVD). Here we show that this parameter can be controlled in a highly reproducible manner, providing an approach to synthesize the nonlinear Kerr coefficient of the material. This holistic empirical study provides relevant guidelines to optimize the properties of LPCVD silicon nitride waveguides for nonlinear optics applications that rely on the Kerr effect

    Phase-coherent lightwave communications with frequency combs

    Get PDF
    Fiber-optical networks are a crucial telecommunication infrastructure in society. Wavelength division multiplexing allows for transmitting parallel data streams over the fiber bandwidth, and coherent detection enables the use of sophisticated modulation formats and electronic compensation of signal impairments. In the future, optical frequency combs may replace multiple lasers used for the different wavelength channels. We demonstrate two novel signal processing schemes that take advantage of the broadband phase coherence of optical frequency combs. This approach allows for a more efficient estimation and compensation of optical phase noise in coherent communication systems, which can significantly simplify the signal processing or increase the transmission performance. With further advances in space division multiplexing and chip-scale frequency comb sources, these findings pave the way for compact energy-efficient optical transceivers.Comment: 17 pages, 9 figure

    Self-injection-locked microcomb-based coherent oscillator

    Full text link
    Narrow-linewidth yet tunable laser oscillators are one of the most important tools for precision metrology, optical atomic clocks, sensing and quantum computing. Commonly used tunable coherent oscillators are based on stimulated emission or stimulated Brillouin scattering, as a result, the operating wavelength band is limited by the gain media. Based on nonlinear optical gain, optical parametric oscillators (OPOs) enable coherent signal generation within the whole transparency window of the medium used. However, the demonstration of OPO-based Hertz-level linewidth and tunable oscillators has remained elusive. Here, we present a tunable coherent oscillator based on a multimode coherent OPO in a high-Q microresonator, i.e., a microcomb. Single-mode coherent oscillation is realized through self-injection locking (SIL) of one selected comb line. We achieve coarse tuning up to 20 nm, and an intrinsic linewidth down to sub-Hertz level, which is three orders of magnitude lower than the pump. Furthermore, we demonstrate that this scheme results into repetition rate stabilization of the microcomb. These results open exciting possibilities for generating tunable coherent radiation where stimulated emission materials are difficult to obtain, and stabilization of microcomb sources beyond the limits imposed by the thermorefractive noise in the cavity

    High spectral efficiency superchannel transmission using a soliton microcomb

    Get PDF
    Optical communication systems have come through five orders of magnitude improvement in data rate over the last three decades. The increased demand in data traffic and the limited optoelectronic component bandwidths have led to state-of-the-art systems employing hundreds of separate lasers in each transmitter. Given the limited optical amplifier bandwidths, focus is now shifting to maximize the spectral efficiency, SE. However, the frequency jitter from neighbouring lasers results in uncertainties of the exact channel wavelength, requiring large guardbands to avoid catastrophic channel overlap. Optical frequency combs with optimal line spacings (typically around 10-50 GHz) can overcome these limitations and maximize the SE. Recent developments in microresonator-based soliton frequency combs (hereafter microcombs) promise a compact, power efficient multi-wavelength and phase-locked light source for optical communications. Here we demonstrate a microcomb-based communication link achieving state-of-the-art spectral efficiency that has previously only been possible with bulk-optics systems. Compared to previous microcomb works in optical communications, our microcomb features a narrow line spacing of 22.1 GHz. In addition, it provides a four order-of-magnitude more stable line spacing compared to free-running lasers. The optical signal-to-noise ratio (OSNR) is sufficient for information encoding using state-of-the-art high-order modulation formats. This enables us to demonstrate transmission of a 12 Tb/s superchannel over distances ranging from a single 82 km span with an SE exceeding 10 bits/s/Hz, to 2000 km with an SE higher than 6 bits/s/Hz. These results demonstrate that microcombs can attain the SE that will spearhead future optical networks
    corecore