247 research outputs found

    Seasonal variation in rest-activity patterns in barnacle geese:Are measurements of activity a good indicator of sleep-wake patterns?

    Get PDF
    Sleep is a widely spread phenomenon in the animal kingdom and is thought to serve important functions. Yet, the function of sleep remains an enigma. Studies in non-model animal species in their natural habitat might provide more insight into the evolution and function of sleep. However, polysomnography in the wild may not always be an option or first choice and some studies may need to rely on rest–activity recordings as a proxy for sleep and wakefulness. In the current paper, we analyzed how accelerometry-based activity data correlate with electroencephalogram (EEG)-based sleep–wake patterns in barnacle geese under seminatural conditions across different seasons. In winter, the geese had pronounced daily rhythms in rest and activity, with most activity occurring during the daytime. In summer, activity was more spread out over the 24 h cycle. Hourly activity scores strongly correlated with EEG-determined time awake, but the strength of the correlation varied with phase of the day and season. In winter, the correlations between activity and waking time were weaker for daytime than for night-time. Furthermore, the correlations between activity and waking during daytime were weaker in winter than in summer. During daytime in winter, there were many instances where the birds were awake but not moving. Experimental sleep deprivation had no effect on the strength of the correlation between activity scores and EEG-based wake time. Overall, hourly activity scores also showed significant inverse correlation with the time spent in non-rapid eye movement (NREM) sleep. However, correlation between activity scores and time spent in REM sleep was weak. In conclusion, accelerometry-based activity scores can serve as a good estimate for time awake or even the specific time spent in NREM sleep. However, activity scores cannot reliably predict REM sleep and sleep architecture

    Isolated neurological presentations of mevalonate kinase deficiency

    Get PDF
    Mevalonate kinase (MK) deficiency is a rare autosomal recessive metabolic disorder caused by pathogenic variants in the MVK gene with a broad phenotypic spectrum including autoinflammation, developmental delay and ataxia. Typically, neurological symptoms are considered to be part of the severe end of the phenotypical spectrum and are reported to be in addition to the autoinflammatory symptoms. Here, we describe a patient with MK deficiency with severe neurological symptoms but without autoinflammation and we found several similar patients in the literature. Possibly, the non‐inflammatory phenotype is related to a specific genotype: the MVK p.(His20Pro)/p.(Ala334Thr) variant. There is probably an underdetection of the neurological MK deficient phenotype without inflammatory symptoms as clinicians may not test for MK deficiency when patients present with only neurological symptoms. In conclusion, although rare, neurological symptoms without hyperinflammation might be more common than expected in MK deficiency. It seems relevant to consider MK deficiency in patients with psychomotor delay and ataxia, even if there are no inflammatory symptoms

    A comparison of continuous and intermittent EEG recordings in geese:How much data are needed to reliably estimate sleep-wake patterns?

    Get PDF
    Recent technological advancements allow researchers to measure electrophysiological parameters of animals, such as sleep, in remote locations by using miniature dataloggers. Yet, continuous recording of sleep might be constrained by the memory and battery capacity of the recording devices. These limitations can be alleviated by recording intermittently instead of continuously, distributing the limited recording capacity over a longer period. We assessed how reduced sampling of sleep recordings affected measurement precision of NREM sleep, REM sleep, and Wake. We analysed a dataset on sleep in barnacle geese that we resampled following 12 different recording schemes, with data collected for 1 min per 5 min up to 1 min per 60 min in steps of 5 min. Recording 1 min in 5 min still yielded precise estimates of hourly sleep-wake values (correlations of 0.9) while potentially extending the total recording period by a factor of 5. The correlation strength gradually decreased to 0.5 when recording 1 min per 60 min. For hourly values of Wake and NREM sleep, the correlation strength in winter was higher compared with summer, reflecting more fragmented sleep in summer. Interestingly for hourly values of REM sleep, correlations were unaffected by season. Estimates of total 24 h sleep-wake values were similar for all intermittent recording schedules compared to the continuous recording. These data indicate that there is a large safe range in which researchers can periodically record sleep. Increasing the sample size while maintaining precision can substantially increase the statistical power, and is therefore recommended whenever the total recording time is limited

    The European starling (<i>Sturnus vulgaris</i>) shows signs of NREM sleep homeostasis but has very little REM sleep and no REM sleep homeostasis

    Get PDF
    Most of our knowledge about the regulation and function of sleep is based on studies in a restricted number of mammalian species, particularly nocturnal rodents. Hence, there is still much to learn from comparative studies in other species. Birds are interesting because they appear to share key aspects of sleep with mammals, including the presence of two different forms of sleep, i.e. non-rapid eye movement (NREM) and rapid eye movement (REM) sleep. We examined sleep architecture and sleep homeostasis in the European starling, using miniature dataloggers for electroencephalogram (EEG) recordings. Under controlled laboratory conditions with a 12:12 h light–dark cycle, the birds displayed a pronounced daily rhythm in sleep and wakefulness with most sleep occurring during the dark phase. Sleep mainly consisted of NREM sleep. In fact, the amount of REM sleep added up to only 1~2% of total sleep time. Animals were subjected to 4 or 8 h sleep deprivation to assess sleep homeostatic responses. Sleep deprivation induced changes in subsequent NREM sleep EEG spectral qualities for several hours, with increased spectral power from 1.17 Hz up to at least 25 Hz. In contrast, power below 1.17 Hz was decreased after sleep deprivation. Sleep deprivation also resulted in a small compensatory increase in NREM sleep time the next day. Changes in EEG spectral power and sleep time were largely similar after 4 and 8 h sleep deprivation. REM sleep was not noticeably compensated after sleep deprivation. In conclusion, starlings display signs of NREM sleep homeostasis but the results do not support the notion of important REM sleep functions

    Sleep homeostasis in the European jackdaw (<i>Coloeus monedula</i>):Sleep deprivation increases NREM sleep time and EEG power while reducing hemispheric asymmetry

    Get PDF
    Introduction: Sleep is a wide-spread phenomenon that is thought to occur in all animals. Yet, the function of it remains an enigma. Conducting sleep experiments in different species may shed light on the evolution and functions of sleep. Therefore, we studied sleep architecture and sleep homeostatic responses to sleep deprivation in the European jackdaw (Coloeus monedula).Methods: A total of nine young adult birds were implanted with epidural electrodes and equipped with miniature data loggers for recording movement activity (accelerometery) and electroencephalogram (EEG). Individually-housed jackdaws were recorded under controlled conditions with a 12:12-h light-dark cycle.Results: During baseline, the birds spent on average 48.5% of the time asleep (39.8% non-rapid eye movement (NREM) sleep and 8.7% rapid eye movement (REM) sleep). Most of the sleep occurred during the dark phase (dark phase: 75.3% NREM sleep and 17.2% REM sleep; light phase 4.3% NREM sleep and 0.1% REM sleep). After sleep deprivation of 4 and 8 h starting at lights off, the birds showed a dose-dependent increase in NREM sleep time. Also, NREM sleep EEG power in the 1.5–3 Hz frequency range, which is considered to be a marker of sleep homeostasis in mammals, was significantly increased for 1-2 h after both 4SD and 8SD. While there was little true unihemispheric sleep in the Jackdaws, there was a certain degree of hemispheric asymmetry in NREM sleep EEG power during baseline, which reduced after sleep deprivation in a dose-dependent manner.Conclusion: In conclusion, jackdaws display homeostatic regulation of NREM sleep and sleep pressure promotes coherence in EEG power

    Cloud cover amplifies the sleep-suppressing effect of artificial light at night in geese

    Get PDF
    In modern society the night sky is lit up not only by the moon but also by artificial light devices. Both of these light sources can have a major impact on wildlife physiology and behaviour. For example, a number of bird species were found to sleep several hours less under full moon compared to new moon and a similar sleep-suppressing effect has been reported for artificial light at night (ALAN). Cloud cover at night can modulate the light levels perceived by wildlife, yet, in opposite directions for ALAN and moon. While clouds will block moon light, it may reflect and amplify ALAN levels and increases the night glow in urbanized areas. As a consequence, cloud cover may also modulate the sleep-suppressing effects of moon and ALAN in different directions. In this study we therefore measured sleep in barnacle geese (Branta leucopsis) under semi-natural conditions in relation to moon phase, ALAN and cloud cover. Our analysis shows that, during new moon nights stronger cloud cover was indeed associated with increased ALAN levels at our study site. In contrast, light levels during full moon nights were fairly constant, presumably because of moonlight on clear nights or because of reflected artificial light on cloudy nights. Importantly, cloud cover caused an estimated 24.8% reduction in the amount of night-time NREM sleep from nights with medium to full cloud cover, particularly during new moon when sleep was unaffected by moon light. In conclusion, our findings suggest that cloud cover can, in a rather dramatic way, amplify the immediate effects of ALAN on wildlife. Sleep appears to be highly sensitive to ALAN and may therefore be a good indicator of its biological effects.ISSN:0269-7491ISSN:1878-2450ISSN:1873-642

    Seasonal variation in sleep homeostasis in migratory geese:A rebound of NREM sleep following sleep deprivation in summer but not in winter

    Get PDF
    Sleep is a behavioral and physiological state that is thought to serve important functions. Many animals go through phases in the annual cycle where sleep time might be limited, for example, during the migration and breeding phases. This leads to the question whether there are seasonal changes in sleep homeostasis. Using electroencephalogram (EEG) data loggers, we measured sleep in summer and winter in 13 barnacle geese (Branta leucopsis) under semi-natural conditions. During both seasons, we examined the homeostatic regulation of sleep by depriving the birds of sleep for 4 and 8 h after sunset. In winter, barnacle geese showed a clear diurnal rhythm in sleep and wakefulness. In summer, this rhythm was less pronounced, with sleep being spread out over the 24-h cycle. On average, the geese slept 1.5 h less per day in summer compared with winter. In both seasons, the amount of NREM sleep was additionally affected by the lunar cycle, with 2 h NREM sleep less during full moon compared to new moon. During summer, the geese responded to 4 and 8 h of sleep deprivation with a compensatory increase in NREM sleep time. In winter, this homeostatic response was absent. Overall, sleep deprivation only resulted in minor changes in the spectral composition of the sleep EEG. In conclusion, barnacle geese display season-dependent homeostatic regulation of sleep. These results demonstrate that sleep homeostasis is not a rigid phenomenon and suggest that some species may tolerate sleep loss under certain conditions or during certain periods of the year.ISSN:1550-9109ISSN:0161-810

    Exercise Stress Testing in Children with Metabolic or Neuromuscular Disorders

    Get PDF
    The role of exercise as a diagnostic or therapeutic tool in patients with a metabolic disease (MD) or neuromuscular disorder (NMD) is relatively underresearched. In this paper we describe the metabolic profiles during exercise in 13 children (9 boys, 4 girls, age 5–15 yrs) with a diagnosed MD or NMD. Graded cardiopulmonary exercise tests and/or a 90-min prolonged submaximal exercise test were performed. During exercise, respiratory gas-exchange and heart rate were monitored; blood and urine samples were collected for biochemical analysis at set time points. Several characteristics in our patient group were observed, which reflected the differences in pathophysiology of the various disorders. Metabolic profiles during exercises CPET and PXT seem helpful in the evaluation of patients with a MD or NMD

    Exercise Stress Testing in Children with Metabolic or Neuromuscular Disorders

    Get PDF
    The role of exercise as a diagnostic or therapeutic tool in patients with a metabolic disease (MD) or neuromuscular disorder (NMD) is relatively underresearched. In this paper we describe the metabolic profiles during exercise in 13 children (9 boys, 4 girls, age 5–15 yrs) with a diagnosed MD or NMD. Graded cardiopulmonary exercise tests and/or a 90-min prolonged submaximal exercise test were performed. During exercise, respiratory gas-exchange and heart rate were monitored; blood and urine samples were collected for biochemical analysis at set time points. Several characteristics in our patient group were observed, which reflected the differences in pathophysiology of the various disorders. Metabolic profiles during exercises CPET and PXT seem helpful in the evaluation of patients with a MD or NMD
    • …
    corecore