7,136 research outputs found

    Magnetic monopoles in noncommutative quantum mechanics 2

    Get PDF
    In this paper we extend the analysis of magnetic monopoles in quantum mechanics in three dimensional rotationally invariant noncommutative space Rλ3\textbf{R}^3_\lambda. We construct the model step-by-step and observe that physical objects known from previous studies appear in a very natural way. Nonassociativity became a topic of great interest lately, often in a connection with magnetic monopoles. We show that this model does not possess this property.Comment: 13 pages, no figure

    Tyrosine phosphorylation is required for Fc receptor-mediated phagocytosis in mouse macrophages

    Get PDF
    Although Fc receptor-mediated phagocytosis is accompanied by a variety of transmembrane signaling events, not all signaling events are required for particle ingestion. For example, Fc receptor-mediated phagocytosis in mouse inflammatory macrophages (Di Virgilio, F., B. C. Meyer, S. Greenberg, and S. C. Silverstein. 1988. J. Cell Biol. 106:657; Greenberg, S., J. El Khoury, F. Di Virgilio, and S. C. Silverstein. 1991. J. Cell Biol. 113:757) and neutrophils (Della Bianca, V., M. Grzeskowiak, and F. Rossi. 1990. J. Immunol. 144:1411) occurs in the absence of cytosolic calcium transients. We sought to identify transmembrane signaling events that are essential for phagocytosis. Here we show that tyrosine phosphorylation is an early event after Fc receptor ligation in mouse inflammatory macrophages, and that the formation of tyrosine phosphoproteins coincides temporally with the appearance of F-actin beneath phagocytic cups. The distribution of tyrosine phosphoproteins that accumulated beneath phagocytic cups was punctate and corresponded to areas of high ligand density on the surface of the antibody-coated red blood cells, which provided the phagocytic stimulus. A tyrosine kinase inhibitor, genistein, but not several inhibitors of protein kinase C, blocked the appearance of tyrosine phosphoproteins as assessed by immunofluorescence, the focal accumulation of F-actin beneath immunoglobulin G-opsonized particles, and the ingestion of these particles as well. We suggest that tyrosine phosphorylation is a critical signaling event that underlies Fc receptor-mediated phagocytosis in mouse macrophages, and is necessary for the engulfment per se

    Passive CO<sub>2</sub> removal in urban soils:evidence from brownfield sites

    Get PDF
    Management of urban brownfield land can contribute to significant removal of atmospheric CO2 through the development of soil carbonate minerals. However, the potential magnitude and stability of this carbon sink is poorly quantified as previous studies address a limited range of conditions and short durations. Furthermore, the suitability of carbonate-sequestering soils for construction has not been investigated. To address these issues we measured total inorganic carbon, permeability and ground strength in the top 20 cm of soil at 20 brownfield sites in northern England, between 2015 and 2017. Across all sites accumulation occurred at a rate of 1–16 t C ha−1 yr−1, as calcite (CaCO3), corresponding to removal of approximately 4–59 t CO2 ha−1 yr−1, with the highest rate in the first 15 years after demolition. C and O stable isotope analysis of calcite confirms the atmospheric origin of the measured inorganic carbon. Statistical modelling found that pH and the content of fine materials (combined silt and clay content) were the best predictors of the total inorganic carbon content of the samples. Measurement of permeability shows that sites with carbonated soils possess a similar risk of run-off or flooding to sandy soils. Soil strength, measured as in-situ bearing capacity, increased with carbonation. These results demonstrate that the management of urban brownfield land to retain fine material derived from concrete crushing on site following demolition will promote calcite precipitation in soils, and so offers an additional CO2 removal mechanism, with no detrimental effect on drainage and possible improvements in strength. Given the large area of brownfield land that is available for development, the contribution of this process to CO2 removal by urban soils needs to be recognised in CO2 mitigation policies

    Genomic plasticity and rapid host switching can promote the evolution of generalism : a case study in the zoonotic pathogen Campylobacter

    Get PDF
    This work was supported by the Biotechnology and Biological Sciences Research Council (BBSRC) grant BB/I02464X/1, the Medical Research Council (MRC) grants MR/M501608/1 and MR/L015080/1, and the Wellcome Trust grant 088786/C/09/Z. GM was supported by a NISCHR Health Research Fellowship (HF-14–13).Peer reviewedPublisher PD

    Cambrian cinctan echinoderms shed light on feeding in the ancestral deuterostome

    Get PDF
    Reconstructing the feeding mode of the latest common ancestor of deuterostomes is key to elucidating the early evolution of feeding in chordates and allied phyla; however, it is debated whether the ancestral deuterostome was a tentaculate feeder or a pharyngeal filter feeder. To address this, we evaluated the hydrodynamics of feeding in a group of fossil stem-group echinoderms (cinctans) using computational fluid dynamics. We simulated water flow past three-dimensional digital models of a Cambrian fossil cinctan in a range of possible life positions, adopting both passive tentacular feeding and active pharyngeal filter feeding. The results demonstrate that an orientation with the mouth facing downstream of the current was optimal for drag and lift reduction. Moreover, they show that there was almost no flow to the mouth and associated marginal groove under simulations of passive feeding, whereas considerable flow towards the animal was observed for active feeding, which would have enhanced the transport of suspended particles to the mouth. This strongly suggests that cinctans were active pharyngeal filter feeders, like modern enteropneust hemichordates and urochordates, indicating that the ancestral deuterostome employed a similar feeding strategy

    Reaction Mechanism and Water/Rock Ratios Involved in Epidosite Alteration of the Oceanic Crust

    Get PDF
    Epidosites are a prominent type of subseafloor hydrothermal alteration of basalts in ophiolites and greenstone belts, showing an end-member mineral assemblage of epidote + quartz + titanite + Fe-oxide. Epidosites are known to form within crustal-scale upflow zones and their fluids have been proposed as deep equivalents of black-smoker seafloor vent fluids. Proposals of the mass of fluid per mass of rock (W/R ratio) needed to form epidosites are contradictory, varying from 20 (Sr isotopes) to > 1,000 (Mg mobility). To test these proposals we have conducted a petrographic, geochemical and reactive-transport numerical simulation study of the chemical reaction that generates km3-size epidosite zones within the lavas and sheeted dike complex of the Samail ophiolite, Oman. At 250–400°C the modeled epidosite-forming fluid has near-neutral pH (∼ 5.2), high fO2, low sulfur and very low Fe (10−6 mol/kg) contents. These features argue against a genetic link with black-smoker fluids. Chemical buffering by the epidosite fluid enriches the precursor spilites in Ca and depletes them in Na and Mg. Completion of the spilite-to-epidosite reaction requires enormous W/R ratios of 700–∼40,000, depending on initial Mg content and temperature. Collectively, the variably altered rocks in the Samail epidosite zones record flow of ∼1015 kg of fluid through each km3 of precursor spilite rock. This fluid imposed on the epidosite an Sr-isotope signature inherited from the previous rock-buffered chemical evolution of the fluid through the oceanic crust, thereby explaining the apparently contradictory low W/R ratios based on Sr isotopes

    Studies of a Lacustrine-Volcanic Mars Analog Field Site with Mars-2020-like Instruments

    Get PDF
    On the upcoming Mars‐2020 rover two remote sensing instruments, Mastcam‐Z and SuperCam, and two microscopic proximity science instruments, SHERLOC and PIXL, will collect compositional (mineralogy, chemistry, and organics) data essential for paleoenvironmental reconstruction. The synergies between and limitations of these instruments were evaluated via study of a Mars analog field site in the Mojave Desert, using instruments approximating the data that will be returned by Mars‐2020. A ground truth dataset was generated for comparison to validate the results. The site consists of a succession of clay‐rich mudstones of lacustrine origin, interbedded tuffs, a carbonate‐silica travertine deposit, and gypsiferous mudstone strata. The major geological units were mapped successfully using simulated Mars‐2020 data. Simulated Mastcam‐Z data identified unit boundaries and Fe‐bearing weathering products. Simulated SuperCam passive shortwave infrared and green Raman data were essential in identifying major mineralogical composition and changes in lacustrine facies at distance; this was possible even with spectrally downsampled passive IR data. LIBS and simulated PIXL data discriminated and mapped major element chemistry. Simulated PIXL revealed mm‐scale zones enriched in zirconium, of interest for age dating. SHERLOC‐like data mapped sulfate and carbonate at sub‐mm scale; silicates were identified with increased laser pulses/spot or by averaging of hundreds of spectra. Fluorescence scans detected and mapped varied classes of organics in all samples, characterized further with follow‐on spatially targeted deep‐UV Raman spectra. Development of dedicated organics spectral libraries is needed to aid interpretation. Given these observations, the important units in the outcrop would be sampled and cached for sample return
    corecore