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Abstract 

 

Reconstructing the feeding mode of the latest common ancestor of deuterostomes is key to 

elucidating the early evolution of feeding in chordates and allied phyla; however, it is debated 

whether the ancestral deuterostome was a tentaculate feeder or a pharyngeal filter feeder. To 

address this, we evaluated the hydrodynamics of feeding in a group of fossil stem-group 

echinoderms (cinctans) using computational fluid dynamics. We simulated water flow past 

three-dimensional digital models of a Cambrian fossil cinctan in a range of possible life 

positions, adopting both passive tentacular feeding and active pharyngeal filter feeding. The 

results demonstrate that an orientation with the mouth facing downstream of the current was 

optimal for drag and lift reduction. Moreover, they show that there was almost no flow to the 

mouth and associated marginal groove under simulations of passive feeding, whereas 

considerable flow towards the animal was observed for active feeding, which would have 

enhanced the transport of suspended particles to the mouth. This strongly suggests that 

cinctans were active pharyngeal filter feeders, like modern enteropneust hemichordates and 

urochordates, indicating that the ancestral deuterostome employed a similar feeding strategy. 
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echinoderms, deuterostomes, evolution, feeding, functional morphology, computational fluid 
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1. Introduction 
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Deuterostomes are one of the three major clades of bilaterian animals. Molecular 

phylogenetics has helped resolve the relationships of the main deuterostome phyla (chordates, 

echinoderms and hemichordates) [1–3], but despite extensive study of their anatomy, 

development and phylogeny for over a century, important aspects of the early evolutionary 

history of deuterostomes remain unclear [4]. Feeding is one such outstanding issue; it was 

long speculated that the ancestral deuterostome had tentacles for collecting food from the 

water column, like modern crinoids and pterobranch hemichordates [5–7], but more recently 

it has been proposed that it had a pharynx with gill slits for actively generating feeding 

currents, similar to enteropneust hemichordates, urochordates, cephalochordates and larval 

lampreys [8–10]. Distinguishing between these competing hypotheses is problematic because 

it is disputed whether the latest common ancestor of deuterostomes had a pterobranch-like 

body plan (with tentacular feeding), or an enteropneust-like body plan (with pharyngeal filter 

feeding) [4]. 

 

The fossil record provides an alternative means of differentiating these two hypotheses 

through the inference of feeding modes in the earliest fossil forms, and could thus inform on 

the ancestral feeding strategy of deuterostomes. Although the early record of most 

deuterostome phyla is patchy and incomplete [4], echinoderms possess a rich record dating 

back to the Cambrian [11,12] because a mineralized skeleton was among their first derived 

traits [13]. Several groups of pre-radiate fossil stem-group echinoderms (Ctenoimbricata, 

ctenocystoids and cinctans) are especially important, as they document the earliest steps in 

the assembly of the echinoderm body plan and retain plesiomorphic characters of the 

ancestral deuterostome [14–16]. Cinctans are the best understood of these groups in terms of 

their anatomy and functional morphology, and so have the greatest potential for elucidating 

deuterostome evolution; however, their mode of feeding is controversial. It is widely 
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accepted that cinctans were sessile epibenthic suspension feeders with an anterolateral mouth 

and one or a pair of marginal grooves [7,14,17–20], but it is debated whether they were 

passive suspension feeders with a system of tentacles, analogous to crinoids [19,20], or active 

pharyngeal filter feeders, similar to urochordates [14,21]. 

 

In order to evaluate competing hypotheses of cinctan feeding mode, we quantitatively 

analysed the functional performance of a Cambrian fossil cinctan. Using three-dimensional 

computational fluid dynamics (CFD), we simulated flow past a digital reconstruction of the 

fossil in a range of different positions relative to the current direction and the sediment–water 

interface, approximating both hypothesized feeding scenarios. The results provide new 

insights into the hydrodynamics of feeding in cinctans, with implications for the 

plesiomorphic mode of feeding in deuterostomes. 

 

 

2. Material and methods 

 

(a) Fossil specimen 

The holotype of the cinctan Protocinctus mansillaensis (MPZ 2004/170; Museo 

Paleontológico de la Universidad de Zaragoza, Spain) was selected for use in CFD 

simulations owing to its exceptional three-dimensional preservation as recrystallized calcite. 

This species comes from the Mansilla Formation of Purujosa, north-east Spain, which is early 

middle Cambrian (Cambrian Series 3, Stage 5) in age (~510 Ma) and is characterized by 

purple to reddish nodular limestones and shales, indicative of a shoreface to offshore 

depositional setting. Like all cinctans, Protocinctus has a flattened, asymmetrical body 
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(theca) and a rigid posterior appendage. A circular mouth is located on the anterior right side 

of the theca; a larger exhalant aperture (the porta) is situated at the anterior midline of the 

theca, covered by a movable plate (the operculum). Protocinctus is also characterized by an 

elongate, oval-shaped theca, a single left marginal groove and a weakly-developed ventral 

swelling at the anterior (figure 1a). 

 

(b) X-ray micro-tomography 

The fossil was scanned with a Phoenix v|tome|x s system and digitally reconstructed using 

the SPIERS software suite [22]. See Rahman and Zamora [23] for details. A ZIP archive 

containing the digital reconstruction in VAXML format can be downloaded from Dryad 

(doi:10.5061/dryad.g4n5m). 

 

(c) Digital restoration 

In order to restore the poorly-preserved upper surface of the studied specimen, the dorsal 

integument and the operculum were virtually extrapolated in SPIERS with a closed spline 

(using other specimens in which the upper surface is better preserved as a reference). The 

operculum was restored in two hypothetical life positions: (1) ‘closed’, with the porta entirely 

covered by the operculum (figure 1b) and (2) ‘open’, with the operculum raised above the 

porta (figure 1c). These reconstructions were then optimized with a low smoothing value to 

remove noise, and converted into NURBS surfaces using Geomagic Studio 

(www.geomagic.com) (models can be downloaded from Dryad: doi:10.5061/dryad.g4n5m). 

 

(d) Computational fluid dynamics simulations 

CFD simulations of water flow around Protocinctus were performed using COMSOL 

Multiphysics (www.uk.comsol.com). The computational domain consisted of a three-
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dimensional volume above a flat solid boundary (85 mm in length and 17.5 mm in diameter), 

on which the Protocinctus reconstruction (23 mm in length and 10 mm in width) was 

centrally fixed (electronic supplementary material, figure S1a). Flow was simulated through 

this domain with an initially uniform inflow velocity at the upstream end and an outflow 

boundary condition (zero pressure gradient across the boundary) at the downstream end. Slip 

conditions (zero stress across the boundary) were used for the domain sides and top, with no-

slip conditions (zero velocity relative to the boundary) for the solid surfaces of the 

reconstruction and the underlying base. The flow domain was a semi-cylinder and was 

sufficiently large that the boundary conditions did not influence the flow. The domain was 

meshed using free tetrahedral elements (electronic supplementary material, figure S1b), with 

mesh resolution fully tested to ensure grid scale independence for the simulation results 

(electronic supplementary material, sensitivity analyses). 

 

A total of 100 simulations were undertaken, using a range of input parameters (electronic 

supplementary material, table S1). In all cases, three-dimensional, incompressible (constant 

density) flow of water was simulated, with the Protocinctus reconstruction held stationary. 

Ambient flow velocities of 0.05, 0.1 or 0.2 m/s (Reynolds numbers of 525–925, 1050–1850 

and 2100–3700, respectively; width of the specimen in the flow taken as the characteristic 

dimension) were simulated to approximate typical near-bottom currents in modern shoreface 

to offshore environments [24]. A stationary solver was used to compute the steady-state flow 

patterns and a laminar flow model was used to solve the Navier-Stokes equations for 

conservation of momentum and the continuity equation for conservation of mass. The effects 

of varying the solver type and flow model were examined for the higher Reynolds number 

flows (electronic supplementary material, sensitivity analyses). In addition, experimental 

studies of flow around a 3-D printed model of Protocinctus were carried out in a flume tank 
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for comparison with the computer simulations (electronic supplementary material, flume tank 

experiments, figure S2). 

 

Three different feeding scenarios were simulated. (1) Passive tentacular feeding using the 

closed Protocinctus reconstruction with the mouth cross-section allowing flow to pass 

through (outflow boundary). (2) The inhalant current of active pharyngeal filter feeding using 

the closed Protocinctus reconstruction with flow velocity through the mouth cross-section 

given a normal outflow velocity of 0.015 m/s. (3) The exhalant current of active pharyngeal 

filter feeding using the open Protocinctus reconstruction with flow velocity through the 

operculum cross-section given a normal inflow velocity of 0.04 m/s. The inhalant and 

exhalant velocities of pharyngeal filter feeding were based on analogy with the extant 

urochordate Styela clava [25]. 

 

To explore the hydrodynamic consequences of different life positions, all of the above 

simulations were performed with the Protocinctus reconstruction oriented at 0°, 45°, 90°, 

135° and 180° to the current, and with the ventral swelling positioned either below 

(equivalent to burial within the sediment) or on top of (equivalent to resting on the sediment) 

the lower boundary of the computational domain. The results were visualized as two-

dimensional cross-sections of flow velocity magnitude with flow vectors (arrows) and 

streamlines. Drag and lift forces and their coefficients (projected frontal area taken as the 

reference area) were calculated to quantify flow around the digital reconstructions. 

 

 

3. Results 
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The results of the CFD simulations show that the overall characteristics of the flow around 

the Protocinctus reconstruction conformed to expectations for boundary layer and wake 

development. In all cases, the velocity decreased rapidly immediately upstream of the 

Protocinctus reconstruction (figure 2; electronic supplementary material, figures S3–S8) and 

a distinctive wake (elongate, low-velocity flow region, typically with an asymmetrical 

vortex) was formed immediately downstream. The size and shape of the wake varied 

depending on the orientation of the reconstruction to the current, but were not significantly 

affected by the simulated feeding scenario, or the placement of the reconstruction in relation 

to the lower boundary of the domain (figure 2; electronic supplementary material, figures S3–

S8). A characteristic boundary layer, shown by a rapid drop in velocity as the flow 

approached the bottom of the domain, was well developed in all the simulations. The 

thickness of the boundary layer was roughly equal to the height of the Protocinctus 

reconstruction in both positions relative to the underlying base (figure 2). 

 

Distinctly different flow patterns were associated with different feeding scenarios. Flow 

vectors and streamlines indicate that the velocity of the flow into the mouth was greatest in 

the simulations of the inhalant current generated by pharyngeal filter feeding (figure 2g–l; 

electronic supplementary material, figures S5 and S6). This was most pronounced when the 

Protocinctus reconstruction was oriented at 180° to the current. Conversely, in the 

simulations where there was no inhalant current, flow into the mouth was generally much 

weaker (figure 2a–f, m–r; electronic supplementary material, figures S3, S4, S7 and S8). 

Flow to the marginal groove was very low for all the simulated feeding modes (electronic 

supplementary material, figure S9). 
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In the simulations of the exhalant current produced by pharyngeal filter feeding, a jet of high-

velocity flow passed out of the porta, intruding into the ambient flow or the wake, depending 

on the orientation of the reconstruction (figure 2m–r; electronic supplementary material, 

figures S7 and S8). When the Protocinctus reconstruction was oriented at 0° to the current, 

this jet directly opposed the ambient flow direction (electronic supplementary material, 

figures S7a–c and S8a–c), whereas with the reconstruction oriented at 180° to the current, it 

flowed in the same direction as the ambient flow, contributing to the wake (figure 2m–r). 

 

Consistent with theoretical expectations, the drag force exerted by the reconstruction on the 

fluid flow increased as the ambient velocity increased, whereas the drag coefficient 

decreased. The lift force also increased with increasing ambient velocity. The orientation of 

the reconstruction strongly influenced both the drag and lift forces and the lift coefficient, 

which were greatest when the reconstructions were oriented at 45°, 90° or 135° to the current. 

The reconstruction position relative to the domain bottom was likewise important, with the 

drag and lift forces and the drag coefficient higher when the ventral swelling was positioned 

on top of the lower boundary of the domain (figure 3; electronic supplementary material, 

figures S10 and S11, tables S2 and S3). 

 

The results of the simulations were not greatly influenced by varying the mesh size, solver or 

flow type, with all these analyses producing very similar flow structures, drag and lift 

(electronic supplementary material, figures S12–S14, table S4). Moreover, comparisons 

between the experimental studies and the computer simulations showed that both approaches 

obtained similar downstream current velocities (electronic supplementary material, figure 

S15). 
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4. Discussion 

 

CFD simulations indicate that orientation had a marked effect on the amount of drag 

generated by Protocinctus, with the largest wake size and highest drag force occurring when 

the reconstruction was oriented at 45°, 90° or 135° to the current (figure 3; electronic 

supplementary material, figures S3–S8, table S2). The lift force and coefficient were also 

greatest when the reconstruction was non-parallel to the current (figure 3; electronic 

supplementary material, figure S11, table S3). Drag and lift can be detrimental to epibenthic 

organisms, making it harder to maintain posture and even dislodging or injuring animals 

[26,27]. While some suspension feeders seek to increase drag to aid feeding [26], this was 

almost certainly not the case for Protocinctus, which exhibits a streamlined profile (figure 1) 

that is clearly adapted to reduce drag parallel to the flow direction. Therefore, it seems most 

probable (on functional grounds) that Protocinctus was preferentially oriented parallel to the 

current in life, minimizing both drag and lift. Simulations with the reconstruction facing 

upstream and downstream produced similar amounts of drag (figure 3; electronic 

supplementary material, figure S10, table S2). However, the lift was substantially greater 

when the reconstruction faced upstream (figure 3; electronic supplementary material, figure 

S11, table S3). Moreover, the simulations of the exhalant current clearly show that the jet of 

exhalant flow out of the porta would have been transported to the mouth by the ambient flow 

if the reconstruction faced into the current (electronic supplementary material, figures S7a–c 

and S8a–c). Because the porta is interpreted as an exhalant opening under both passive 

[19,20] and active [14,21] feeding scenarios, an upstream orientation would have led to 

fouling of the mouth and associated marginal groove in either mode of feeding. 

Consequently, it can be inferred that cinctans were oriented downstream in life, and this 
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agrees with previous interpretations of cinctan functional morphology [7,19,21] and a 

qualitative flume study [18], which suggested that an orientation with the mouth facing away 

from the prevailing current would have enhanced feeding and/or stability. 

 

The flow structure did not vary appreciably according to the position of Protocinctus relative 

to the sediment–water interface, but the drag and lift forces were higher in the simulations of 

the ventral swelling resting on top of the sediment surface (figure 3; electronic supplementary 

material, tables S2 and S3). This suggests that a position with the ventral swelling buried was 

optimal for reducing drag and lift, and might also have been beneficial for anchoring the 

animal to the seafloor [17,28]. Regardless of the placement of the ventral swelling, however, 

Protocinctus would always have been situated in the low-velocity boundary layer, with the 

mouth and marginal groove close to the sediment surface (figure 2). This position has 

implications for the interpretation of the animal’s mode of feeding. The simulations of 

passive feeding with Protocinctus in a downstream orientation demonstrate that there was 

almost no flow to the mouth and adjacent marginal groove (figure 2a–f; electronic 

supplementary material, figure S9), indicating that the transport of suspended particles to the 

animal would have been extremely limited. Nutrient flux is known to be very low within the 

boundary layer [29], and modern passive suspension feeders typically possess specialized 

food-capturing structures, such as fans, nets or tentacles, which are elevated above this zone, 

where there are higher rates of flow and nutrient flux, to facilitate feeding [26,30]. There is 

no evidence of such morphological adaptations in cinctans, which are characterized by a 

flattened body with recumbent feeding structures (mouth and marginal groove). Thus, if 

cinctans faced downstream (as argued above) and relied on external flows alone, they would 

have had access to a very limited supply of nutrients, which was likely insufficient for 

passive tentaculate feeding. 
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CFD simulations provide better support for an active pharyngeal filter feeding mode of life. 

The inhalant current generated by Protocinctus channelled considerable flow towards the 

animal (figure 2g–l), which would have enhanced the transport of suspended particles into the 

mouth. Furthermore, simulations of active feeding with Protocinctus facing downstream 

show that the exhalant jet ejected from the porta travelled above any recirculating flow in the 

wake close to the mouth and marginal groove, avoiding potential contamination of feeding 

currents (figure 2m–r). The same pattern is documented in extant pharyngeal filter feeders, 

such as urochordates, which are capable of generating powerful exhalant flows that carry 

wastewater beyond the mouth [25,26]. Consequently, simulations of both inhalant (figure 2g–

l) and exhalant (figure 2m–r) currents are compatible with pharyngeal filter feeding, and this 

agrees with studies of cinctans that suggested such a feeding mode based on the functional 

morphology of the porta–operculum complex and detailed comparisons with urochordates 

[14,18,21]. 

 

Our findings are broadly in agreement with previous interpretations of the earliest fossil 

stem-group echinoderms (Ctenoimbricata, ctenocystoids and cinctans) as pharyngeal filter 

feeders [14–16], and argue against their interpretation as passive tentaculate feeders [19,20]. 

Among modern deuterostomes, active suspension feeding with pharyngeal gill slits is 

documented in enteropneust hemichordates, urochordates, cephalochordates and larval 

lampreys, while suspension feeding with tentacles characterizes crinoids and pterobranch 

hemichordates. Owing to their position close to the base of echinoderm phylogeny, the 

inference of pharyngeal filter feeding in cinctans allows us to extend this feeding mode back 

to the latest common ancestor of all deuterostomes (figure 4). This provides strong support 

for the hypothesis that the ancestral deuterostome fed through pharyngeal filtering [8–10], 
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indicating that a pharynx with gill slits is in all likelihood a deuterostome symplesiomorphy 

and that the tentacular feeding systems of echinoderms and pterobranchs are most probably 

not homologous. 
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Figure captions 

 

Figure 1. Protocinctus mansillaensis. (a) Original fossil specimen (ventral view). (b) Digital 

restoration with the operculum closed (anterolateral view). (c) Digital restoration with the 

operculum open (anterolateral view). (d) Digital restoration with the operculum closed 

(lateral view). 

 

Figure 2. Results of the CFD simulations with Protocinctus oriented at 180° to the current, 

visualized as two-dimensional plots (horizontal and vertical cross-sections) of flow velocity 

magnitude (false-colour scale different for each ambient flow velocity) with flow vectors 

(arrows; length of arrows proportional to the natural logarithm of the flow velocity 

magnitude) and streamlines. (a–f) Simulations of passive tentacular feeding. (g–l) 

Simulations of the inhalant current of pharyngeal filter feeding. (m–r) Simulations of the 
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exhalant current of pharyngeal filter feeding. The mouth is indicated by a *, the porta is 

indicated by a +. The ambient flow is from left to right. 

 

Figure 3. Drag and lift forces for the CFD simulations. (a–c) Simulations of passive 

tentacular feeding. (d–f) Simulations of the inhalant current of pharyngeal filter feeding. (g–i) 

Simulations of the exhalant current of pharyngeal filter feeding. Red symbols indicate drag 

force, blue symbols indicate lift force. Triangles indicate results of simulations of the ventral 

swelling resting on top of the sediment surface, circles indicate results of simulations of the 

ventral swelling buried in the sediment. 

 

Figure 4. Phylogeny showing feeding modes of extant and extinct deuterostomes (cinctans 

marked with a †). Blue boxes indicate tentaculate suspension feeding, red boxes indicate 

pharyngeal filter feeding, green boxes indicate multiple feeding modes. 

 

 

Electronic supplementary material 

 

Supplementary Information. Supplementary methods and figures. 

 

Table S1. Input parameters for the CFD simulations. 

 

Table S2. Drag force and coefficient for the CFD simulations. 

 

Table S3. Lift force and coefficient for the CFD simulations. 
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Table S4. Drag and lift forces and their coefficients for the sensitivity analyses of mesh size, 

solver and flow type. 

 

 

Data available on Dryad  

 

Model S1. Digital reconstruction of Protocinctus in VAXML format, compressed in a ZIP 

archive. To view, unzip the .zip file and open the unpacked .vaxml file with SPIERSview 

(program and documentation available from www.spiers-software.org). 

 

Model S2. Digitally restored model of Protocinctus (operculum in ‘closed’ position) in IGES 

format, compressed in a ZIP archive. To view, unzip the .zip file and open the unpacked .igs 

file with FreeCAD (program and documentation available from www.freecadweb.org). 

 

Model S3. Digitally restored model of Protocinctus (operculum in ‘open’ position) in IGES 

format, compressed in a ZIP archive. To view, unzip the .zip file and open the unpacked .igs 

file with FreeCAD (program and documentation available from www.freecadweb.org). 

 

Video S1. Results of a CFD simulation using a time-dependent solver to show flow time-

evolution. Simulation of passive tentacular feeding with Protocinctus oriented at 180° to the 

current (ambient velocity of 0.2 m/s) and with the ventral swelling buried within the 

sediment, visualized as two-dimensional plots (horizontal cross-sections) of flow velocity 

magnitude (false-colour scale different for each ambient flow velocity) with streamlines over 

the first 10 s with a time step size of 0.01 s. 
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Figure 4. 


