2 research outputs found
Compression bending test mechanism for plywood - fiberglass composites. Encoding complex 3d form into flat 2d strips, through fiber orientation and layers count distribution
Summarization: A compression bending test mechanism has been developed to measure and document the bending properties of plywood-fiberglass composite slender beams, employing Tracker, a digital video analysis and modelling tool and Grasshopper, a graphical algorithm editor for Rhino 3d. Fiberglass is distributed along planar plywood strips, in one or more layers, in four warp-weft fiber directions of 0, 30, 45 and 60 degrees. The deflections, forces and geometry of the bending tests are analyzed and classified per case, in order to derive the bending modulus, the proportional limit and the minimum bending radius of various plywood-fiberglass layout schemes. The results are embedded into K2Engineering, a structurally calibrated extension of Kangaroo2 grasshopper plugin, which is a 3DOF Dynamic Relaxation interactive simulation engine. K2engineering offers direct input and output of structural data that define the resulting shape and can be used to evaluate its structural performance respectively. This enables a unified, multiscalar materially informed form finding process, where the final geometry is approximated according to the local material specifications at a macro, meso and micro scale. General dimensions, i.e. width length and thickness, the number of fiberglass layers and the orientation of wood grain and glass fibers respectively, along with the resin formulation and the chosen boundary conditions can output a variable stiffness strip, that when bent, converges into a non-symmetrical shape of variable curvature without the need of a secondary support system
Parametricism vs Materialism : Evolution of digital technologies for development
We build on previous technological developments in CAAD by looking into parametric design exploration and the development of the concept of parametricism. We use the phenomenological backdrop to account for our physical experiences and encounters as well as our mental ones; both evident in the link between parametric design as a process and an outcome. In specific, we previously examined two particular metaphors. The first metaphor addressed aspects of virtual environments that resemble our physical world; In other words, computer model as physical model and digital world as material world. In this volume, we extend the exploration into aspects of virtual environments and their resemblance to physical environments by looking at ‘performance’ aspects: the way in which environments are sensed, measured, tracked and visualised. Moreover, we reflect on matters and materiality in both virtual and physical space philosophically, theoretically, practically and reflectively. The second metaphor looked into the modes and means of interaction between our bodies and such virtual environment. Here we extend the investigation to look at the ways in which measures of environmental performance influence human interaction in real environments. The exploration takes us further to look into the area of design fabrication of the built environment, and methods in which developed processes meet environmental performance requirements, and the innovative outcomes that lead to disruptive technologies getting introduced into design and we revisit parametric design under this focus area