6 research outputs found

    Estudio de supernovas ricas y pobres en hidrógeno

    Get PDF
    Las supernovas (SNs) marcan el final explosivo de un grupo de estrellas. Se ha establecido que las SNs de colapso de núcleo resultan de estrellas masivas (≳ 8 M ⊙) mientras que las SNs termonucleares resultan de enanas blancas en sistemas binarios. No obstante, esta distinción se basa mayormente en modelos teóricos que tienen en cuenta la evolución estelar de progenitores pre-definidos y aún no es claro cómo influyen las variaciones de ciertas caracterı́sticas como pueden ser la metalicidad, la multiplicidad, la tasa de pérdida de masa, entre otros, en las propiedades observadas de las SNs. Si bien algunos modelos han sido respaldados por las observaciones, la escasez de observaciones directas de estrellas progenitoras trae como consecuencia que se desconozca la naturaleza exacta de los progenitores asociados a diferentes SNs. Una pregunta fundamental que todavı́a no ha sido resuelta en el estudio de SNs es ¿Cuál es la naturaleza exacta de las estrellas que explotan como SN? En este trabajo se estudian parámetros observacionales derivados de las curvas de luz y/o espectros de SNs II, ricas en hidrógeno, SNs IIb, pobres en hidrógeno y SNs Ia, deficientes en hidrógeno, con el objetivo de obtener información respecto de sus sistemas progenitores y/o proveer información útil que pueda ser tenida en cuenta a la hora de formular modelos teóricos. En el capı́tulo 2 se comparan las curvas de luz de un grupo número de SNs II y SNs IIb. No sólo se analizaron algunos parámetros generalmente estudiados en la literatura sino que para realizar una comparación independiente del tipo de SN observada, también se definieron nuevos parámetros que fueron comparados con los antes mencionados. Se encontró que las SNs II y las SNs IIb provendrı́an de progenitores que han atravesado diferentes procesos evolutivos. Dado que dicho análisis no considera efectos que podrı́an producir otros mecanismos de potenciación de la SN, en el capı́tulo 3 se estudiaron las propiedades de un grupo de SNs II más luminosas que las consideradas en el capı́tulo anterior para estudiar cuáles podrı́an ser los mecanismos que las potencian. Se encontró que las caracterı́sticas de la muestra estudiada podrı́an explicarse por la presencia de CSM poco denso en los alrededores de las SNs. En el capı́tulo 4 se utilizan las herramientas de análisis desarrolladas durante el capı́tulo 2 para estudiar una caracterı́stica previamente ignorada presente en las curvas de luz de SNs Ia con el objetivo de determinar si dicha caracterı́stica provee nueva información respecto de este tipo de SNs. Si bien se especula respecto de los orı́genes fı́sicos de la caracterı́stica estudiada, es más adecuado que tal estudio sea realizado desde el punto de vista del modelado teórico de SNs teniendo en cuenta que el resultado principal del trabajo presentado es que la caracterı́stica estudiada se puede ver en la mayorı́a de las SNs Ia que tienen curvas de luz de gran calidad. En el capı́tulo 5.1 se presentan las conclusiones generales del trabajo realizado y las perspectivas de trabajo futuro. Finalmente, en el Apéndice se presentan los códigos desarrollados para realizar algunas de las mediciones descriptas en la tesis.Facultad de Ciencias Astronómicas y Geofísica

    Comparison of the optical light curves of hydrogen-rich and hydrogen-poor type II supernovae

    Get PDF
    Type II supernovae (SNe II) show strong hydrogen features in their spectra throughout their whole evolution, while type IIb supernovae (SNe IIb) spectra evolve from dominant hydrogen lines at early times to increasingly strong helium features later on. However, it is currently unclear whether the progenitors of these SN types form a continuum in pre-SN hydrogen mass or whether they are physically distinct. SN light-curve morphology directly relates to progenitor and explosion properties such as the amount of hydrogen in the envelope, the pre-SN radius, the explosion energy, and the synthesized mass of radioactive material. In this work, we study the morphology of the optical-wavelength light curves of hydrogen-rich SNe II and hydrogen-poor SNe IIb to test whether an observational continuum exists between the two. Using a sample of 95 SNe (73 SNe II and 22 SNe IIb), we define a range of key observational parameters and present a comparative analysis between both types. We find a lack of events that bridge the observed properties of SNe II and IIb. Light-curve parameters such as rise times and post-maximum decline rates and curvatures clearly separate both SN types and we therefore conclude that there is no continuum, with the two SN types forming two observationally distinct families. In the V band a rise time of 17 d (SNe II lower and SNe IIb higher), and a magnitude difference between 30 and 40 d post-explosion of 0.4 mag (SNe II lower and SNe IIb higher) serve as approximate thresholds to differentiate both types.Fil: Pessi, Priscila Jael. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Astrofísica La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Astronómicas y Geofísicas. Instituto de Astrofísica La Plata; Argentina. Universidad Nacional de La Plata. Facultad de Ciencias Astronómicas y Geofísicas; ArgentinaFil: Folatelli, Gaston. Universidad Nacional de La Plata. Facultad de Ciencias Astronómicas y Geofísicas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Astrofísica La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Astronómicas y Geofísicas. Instituto de Astrofísica La Plata; ArgentinaFil: Anderson, J. P.. European Southern Observatory Chile.; ChileFil: Bersten, Melina Cecilia. Universidad Nacional de La Plata. Facultad de Ciencias Astronómicas y Geofísicas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Astrofísica La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Astronómicas y Geofísicas. Instituto de Astrofísica La Plata; ArgentinaFil: Burns, C.. Observatories Of The Carnegie Institution For Science; Estados UnidosFil: Contreras, C.. Las Campanas Observatory; Chile. Space Telescope Science Institute; Estados UnidosFil: Davis, S.. Florida State University; Estados UnidosFil: Englert Urrutia, Brenda Nahir. Ministerio de Ciencia. Tecnología e Innovación Productiva. Agencia Nacional de Promoción Científica y Tecnológica; Argentina. Universidad Nacional de La Plata. Facultad de Ciencias Astronómicas y Geofísicas; ArgentinaFil: Hamuy, M.. Universidad de Chile; ChileFil: Hsiao, Eric. Florida State University; Estados UnidosFil: Martinez, Laureano. Universidad Nacional de La Plata. Facultad de Ciencias Astronómicas y Geofísicas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Astrofísica La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Astronómicas y Geofísicas. Instituto de Astrofísica La Plata; ArgentinaFil: Morrell, Nidia Irene. Las Campanas Observatory; Chile. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Astrofísica La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Astronómicas y Geofísicas. Instituto de Astrofísica La Plata; ArgentinaFil: Phillips, M. M.. Las Campanas Observatory; ChileFil: Suntzeff, N.. Texas A&M University; Estados UnidosFil: Stritzinger, M. D.. University Aarhus; Dinamarc

    Carnegie Supernova Project: Kinky i-band light curves of Type Ia supernovae

    Get PDF
    We present detailed investigation of a specific i-band light-curve feature in Type Ia supernovae (SNe Ia) using the rapid cadence and high signal-to-noise ratio light curves obtained by the Carnegie Supernova Project. The feature is present in most SNe Ia and emerges a few days after the i-band maximum. It is an abrupt change in curvature in the light curve over a few days and appears as a flattening in mild cases and a strong downward concave shape, or a 'kink', in the most extreme cases. We computed the second derivatives of Gaussian Process interpolations to study 54 rapid-cadence light curves. From the second derivatives we measure: (1) the timing of the feature in days relative to i-band maximum; tdm2(i) and (2) the strength and direction of the concavity in mag d-2; dm2(i). 76 per cent of the SNe Ia show a negative dm2(i), representing a downward concavity - either a mild flattening or a strong 'kink'. The tdm2(i) parameter is shown to correlate with the colour-stretch parameter sBV, a SN Ia primary parameter. The dm2(i) parameter shows no correlation with sBV and therefore provides independent information. It is also largely independent of the spectroscopic and environmental properties. Dividing the sample based on the strength of the light-curve feature as measured by dm2(i), SNe Ia with strong features have a Hubble diagram dispersion of 0.107 mag, 0.075 mag smaller than the group with weak features. Although larger samples should be obtained to test this result, it potentially offers a new method for improving SN Ia distance determinations without shifting to more costly near-infrared or spectroscopic observations.Fil: Pessi, Priscila Jael. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Astrofísica La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Astronómicas y Geofísicas. Instituto de Astrofísica La Plata; ArgentinaFil: Hsiao, E. Y.. Florida State University; Estados UnidosFil: Folatelli, Gaston. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Astrofísica La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Astronómicas y Geofísicas. Instituto de Astrofísica La Plata; ArgentinaFil: Anderson, J. P.. European Southern Observatory Santiago; ChileFil: Burns, C. R.. No especifíca;Fil: Uddin, S.. Texas A&M University; Estados UnidosFil: Galbany, L.. Consejo Superior de Investigaciones Científicas; EspañaFil: Phillips, M. M.. No especifíca;Fil: Morrell, N.. No especifíca;Fil: Ashall, C.. University of Hawaii at Manoa; Estados UnidosFil: Baron, E.. No especifíca;Fil: Contreras, C.. No especifíca;Fil: Hamuy, M.. Texas A&M University; Estados UnidosFil: Hoeflich, P.. Florida State University; Estados UnidosFil: Krisciunas, K.. Texas A&M University; Estados UnidosFil: Kumar, S.. Florida State University; Estados UnidosFil: Lu, J.. Florida State University; Estados UnidosFil: Martinez, Laureano. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Astrofísica La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Astronómicas y Geofísicas. Instituto de Astrofísica La Plata; ArgentinaFil: Piro, A. L.. No especifíca;Fil: Shahbandeh, M.. Florida State University; Estados UnidosFil: Stritzinger, M. D.. University Aarhus; DinamarcaFil: Suntzeff, N. B.. Texas A&M University; Estados Unido

    SN 2013ai: a link between Hydrogen-rich and Hydrogen-poor Core-collapse Supernovae

    Get PDF
    We present a study of the optical and near-infrared (NIR) spectra of SN 2013ai along with its light curves. These data range from discovery until 380 days after explosion. SN 2013ai is a fast declining Type II supernova (SN II) with an unusually long rise time, 18.9 2.7 days in the V-band, and a bright V-band peak absolute magnitude of -18.7 0.06 mag. The spectra are dominated by hydrogen features in the optical and NIR. The spectral features of SN 2013ai are unique in their expansion velocities, which, when compared to large samples of SNe II, are more than 1,000 km s-1 faster at 50 days past explosion. In addition, the long rise time of the light curve more closely resembles SNe IIb rather than SNe II. If SN 2013ai is coeval with a nearby compact cluster, we infer a progenitor zero-age main-sequence mass of ∼17 M o˙. After performing light-curve modeling, we find that SN 2013ai could be the result of the explosion of a star with little hydrogen mass, a large amount of synthesized 56Ni, 0.3-0.4 M o˙, and an explosion energy of 2.5-3.0 1051 erg. The density structure and expansion velocities of SN 2013ai are similar to those of the prototypical SN IIb, SN 1993J. However, SN 2013ai shows no strong helium features in the optical, likely due to the presence of a dense core that prevents the majority of γ-rays from escaping to excite helium. Our analysis suggests that SN 2013ai could be a link between SNe II and stripped-envelope SNe.Fil: Davis, Scott. University of California; Estados UnidosFil: Pessi, Priscila Jael. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Astrofísica La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Astronómicas y Geofísicas. Instituto de Astrofísica La Plata; ArgentinaFil: Fraser, M.. University College Dublin; IrlandaFil: Ertini, Keila Yael. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Astrofísica La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Astronómicas y Geofísicas. Instituto de Astrofísica La Plata; ArgentinaFil: Martinez, Veronica Laura. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Astrofísica La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Astronómicas y Geofísicas. Instituto de Astrofísica La Plata; ArgentinaFil: Hoeflich, Peter. Florida State University; Estados UnidosFil: Hsiao, Eric. Florida State University; Estados UnidosFil: Folatelli, Gaston. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Astrofísica La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Astronómicas y Geofísicas. Instituto de Astrofísica La Plata; ArgentinaFil: Ashall, Chris. University of Hawaii at Manoa; Estados UnidosFil: Phillips, Mark. Carnegie Observatories. Las Campanas Observatory; ChileFil: Anderson, J. P.. European Southern Observatory Chile; ChileFil: Bersten, Melina Cecilia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Astrofísica La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Astronómicas y Geofísicas. Instituto de Astrofísica La Plata; ArgentinaFil: Englert, B.. Universidad Nacional de La Plata. Facultad de Ciencias Astronómicas y Geofísicas; ArgentinaFil: Fisher, A.. Florida State University; Estados UnidosFil: Benetti, S.. Osservatorio Astronomico di Padova; ItaliaFil: Simaz Bunzel, Adolfo. Provincia de Buenos Aires. Gobernación. Comisión de Investigaciones Científicas. Instituto Argentino de Radioastronomía. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto Argentino de Radioastronomía; ArgentinaFil: Burns, Christopher R.. Observatories of the Carnegie Institution for Science; Estados UnidosFil: Chen, T. W.. Stockholm University; SueciaFil: Contreras, Carlos. 9Carnegie Observatories. Las Campanas Observatory; ChileFil: Elias Rosa, N.. Osservatorio Astronomico di Padova; ItaliaFil: Falco, E.. Harvard-Smithsonian Center for Astrophysics; Estados UnidosFil: Galbany, Lluís. Harvard-Smithsonian Center for Astrophysics; Estados UnidosFil: Kirshner, Robert. Harvard-Smithsonian Center for Astrophysics; Estados UnidosFil: Kumar, S.. Florida State University; Estados UnidosFil: Lu, J.. Florida State University; Estados UnidosFil: Lyman, D.. University of Warwick; Reino UnidoFil: Marion, G. H.. University of Warwick; Reino UnidoFil: Mattila, S.. University of Turku; FinlandiaFil: Maund, J.. University of Sheffield; Reino UnidoFil: Morrell, Nidia Irene. Carnegie Observatories. Las Campanas Observatory; ChileFil: Serón, J.. University of Sheffield; Reino UnidoFil: Stritzinger, Maximilian. Aarhus University; DinamarcaFil: Shahbandeh, Melissa. Florida State University; Estados UnidosFil: Sullivan, Mark. Aarhus University; DinamarcaFil: Suntzeff, N. B.. Texas A&M University; Estados UnidosFil: Young, D. R.. Texas A&M University; Estados Unido

    Comparison of the optical light curves of hydrogen-rich and hydrogen-poor type II supernovae

    No full text
    Type II supernovae (SNe II) show strong hydrogen features in their spectra throughout their whole evolution, while type IIb supernovae (SNe IIb) spectra evolve from dominant hydrogen lines at early times to increasingly strong helium features later on. However, it is currently unclear whether the progenitors of these SN types form a continuum in pre-SN hydrogen mass or whether they are physically distinct. SN light-curve morphology directly relates to progenitor and explosion properties such as the amount of hydrogen in the envelope, the pre-SN radius, the explosion energy, and the synthesized mass of radioactive material. In this work, we study the morphology of the optical-wavelength light curves of hydrogen-rich SNe II and hydrogen-poor SNe IIb to test whether an observational continuum exists between the two. Using a sample of 95 SNe (73 SNe II and 22 SNe IIb), we define a range of key observational parameters and present a comparative analysis between both types. We find a lack of events that bridge the observed properties of SNe II and IIb. Light-curve parameters such as rise times and post-maximum decline rates and curvatures clearly separate both SN types and we therefore conclude that there is no continuum, with the two SN types forming two observationally distinct families. In the V band a rise time of 17 d (SNe II lower and SNe IIb higher), and a magnitude difference between 30 and 40 d post-explosion of 0.4 mag (SNe II lower and SNe IIb higher) serve as approximate thresholds to differentiate both types.Facultad de Ciencias Astronómicas y Geofísica

    Carnegie Supernova Project-II: Near-infrared Spectroscopic Diversity of Type II Supernovae

    Get PDF
    We present 81 near-infrared (NIR) spectra of 30 Type II supernovae (SNe II) from the Carnegie Supernova Project-II (CSP-II), the largest such data set published to date. We identify a number of NIR features and characterize their evolution over time. The NIR spectroscopic properties of SNe II fall into two distinct groups. This classification is first based on the strength of the He i λ1.083 μm absorption during the plateau phase; SNe II are either significantly above (spectroscopically strong) or below 50 Å (spectroscopically weak) in pseudo equivalent width. However, between the two groups other properties, such as the timing of CO formation and the presence of Sr ii, are also observed. Most surprisingly, the distinct weak and strong NIR spectroscopic classes correspond to SNe II with slow and fast declining light curves, respectively. These two photometric groups match the modern nomenclature of SNe IIP, which show a long duration plateau, and IIL, which have a linear declining light curve. Including NIR spectra previously published, 18 out of 19 SNe II follow this slow declining-spectroscopically weak and fast declining-spectroscopically strong correspondence. This is in apparent contradiction to the recent findings in the optical that slow and fast decliners show a continuous distribution of properties. The weak SNe II show a high-velocity component of helium that may be caused by a thermal excitation from a reverse shock created by the outer ejecta interacting with the red supergiant wind, but the origin of the observed dichotomy is not understood. Further studies are crucial in determining whether the apparent differences in the NIR are due to distinct physical processes or a gap in the current data set.Fil: Davis, Scott. Florida State University; Estados UnidosFil: Hsiao, Eric. Florida State University; Estados UnidosFil: Ashall, Chris. Florida State University; Estados UnidosFil: Hoeflich, Peter. Florida State University; Estados UnidosFil: Phillips, Mark. Florida State University; Estados Unidos. Las Campanas Observatory; ChileFil: Marion, G. H.. University of Texas at Austin; Estados UnidosFil: Kirshner, Robert. Harvard-Smithsonian Center for Astrophysics; Estados Unidos. Gordon and Betty Moore Foundation; Estados UnidosFil: Morrell, Nidia Irene. Las Campanas Observatory; Chile. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Astrofísica La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Astronómicas y Geofísicas. Instituto de Astrofísica La Plata; ArgentinaFil: Sand, David. University of Arizona; Estados UnidosFil: Burns, Christopher R.. Carnegie Institution for Science; Estados UnidosFil: Contreras Velásquez, Carlos. Las Campanas Observatory; ChileFil: Stritzinger, Maximilian. University Aarhus; DinamarcaFil: Anderson, Joseph. European Southern Observatory Chile; ChileFil: Baron, Edward. University Aarhus; Dinamarca. Oklahoma State University; Estados Unidos. Universitat Hamburg; AlemaniaFil: Diamond, Tiara. National Aeronautics and Space Administration; Estados UnidosFil: Gutiérrez, C. P.. University of Southampton; Reino UnidoFil: Hamuy, Mario. Universidad de Chile; ChileFil: Holmbo, S.. University Aarhus; DinamarcaFil: Kasliwal, Mansi. California Institute of Technology; Estados UnidosFil: Krisciunas, Kevin. Texas A&M University; Estados UnidosFil: Kumar, Sahana. Florida State University; Estados UnidosFil: Lu, J.. Florida State University; Estados UnidosFil: Pessi, Priscila Jael. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Astrofísica La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Astronómicas y Geofísicas. Instituto de Astrofísica La Plata; ArgentinaFil: Piro, Anthony. Carnegie Institution for Science; Estados UnidosFil: Prieto Katunaric, Jose Luis. Universidad Diego Portales; ChileFil: Shahbandeh, Melissa. Florida State University; Estados UnidosFil: Suntzeff, Nicholas B.. Texas A&M University; Estados Unido
    corecore