79 research outputs found

    Dark Tourism in the land of Sunshine: An intercultural business model for the routes of death and disaster in Portugal

    Get PDF
    The main goal of this dissertation is the creation and subsequent implementation of dark tourism routes in Portugal, following a business model that already exists in other cultures. This typology of tourism is an extension of cultural tourism and is classified by the search for places where once disasters, suffering and death occurred. Thus, concentration camps, inactive prisons, serial killers' homes, cemeteries, and all other places that fit into the patterns of death, tragedy and suffering can be considered dark tourism sites. In Portugal, there are some places associated with the practice of dark tourism, although this type of business is not yet sufficiently explored. Therefore, this dissertation intends to use the country’s heritage, which is one of the levers for promoting tourism and an important factor of development, thus justifying the elaboration of a conceptual map associated with tourism. With the delineation of routes in this dissertation, we intend not only to introduce this market niche in the country, but also to contribute innovatively to the tourist dynamics, in order to blur the existing seasonality, which arises from the demand for sun and sea tourism. With the conception and design of these routes, we intend to make a pioneering contribution to the creation of a platform to promote dark tourism in the country. The creation of a business model and a marketing plan results from the need to assess the viability of the implementation of this project, and to discuss the best strategies for implementing it

    Reduced nerve injury-induced neuropathic pain in kinin B1 receptor knock-out mice

    Get PDF
    Injury to peripheral nerves often results in a persistent neuropathic pain condition that is characterized by spontaneous pain, allodynia, and hyperalgesia. Nerve injury is accompanied by a local inflammatory reaction in which nerve-associated and immune cells release several pronociceptive mediators. Kinin B1 receptors are rarely expressed in nontraumatized tissues, but they can be expressed after tissue injury. Because B1 receptors mediate chronic inflammatory painful processes, we studied their participation in neuropathic pain using receptor gene-deleted mice. In the absence of neuropathy, we found no difference in the paw-withdrawal responses to thermal or mechanical stimulation between B1 receptor knock-out mice and 129/J wild-type mice. Partial ligation of the sciatic nerve in the wild-type mouse produced a profound and long-lasting decrease in thermal and mechanical thresholds in the paw ipsilateral to nerve lesion. Threshold changed neither in the sham-operated animals nor in the paw contralateral to lesion. Ablation of the gene for the B1 receptor resulted in a significant reduction in early stages of mechanical allodynia and thermal hyperalgesia. Furthermore, systemic treatment with the B1 selective receptor antagonist des-Arg9-[Leu8]-bradykinin reduced the established mechanical allodynia observed 7-28 d after nerve lesion in wild-type mice. Partial sciatic nerve ligation induced an upregulation in B1 receptor mRNA in ipsilateral paw, sciatic nerve, and spinal cord of wild-type mice. Together, kinin B1 receptor activation seems to be essential to neuropathic pain development, suggesting that an oral-selective B1 receptor antagonist might have therapeutic potential in the management of chronic pain

    Kinin B2 receptor regulates chemokines CCL2 and CCL5 expression and modulates leukocyte recruitment and pathology in experimental autoimmune encephalomyelitis (EAE) in mice

    Get PDF
    BACKGROUND: Kinins are important mediators of inflammation and act through stimulation of two receptor subtypes, B1 and B2. Leukocyte infiltration contributes to the pathogenesis of autoimmune inflammation in the central nervous system (CNS), occurring not only in multiple sclerosis (MS) but also in experimental autoimmune encephalomyelitis (EAE). We have previously shown that the chemokines CCL2 and CCL5 play an important role in the adhesion of leukocytes to the brain microcirculation in EAE. The aim of the present study was to evaluate the relevance of B2 receptors to leukocyte-endothelium interactions in the cerebral microcirculation, and its participation in CNS inflammation in the experimental model of myelin-oligodendrocyte-glycoprotein (MOG)35-55-induced EAE in mice. METHODS: In order to evaluate the role of B2 receptor in the cerebral microvasculature we used wild-type (WT) and kinin B2 receptor knockout (B2-/-) mice subjected to MOG35-55-induced EAE. Intravital microscopy was used to investigate leukocyte recruitment on pial matter vessels in B2-/- and WT EAE mice. Histological documentation of inflammatory infiltrates in brain and spinal cords was correlated with intravital findings. The expression of CCL5 and CCL2 in cerebral tissue was assessed by ELISA. RESULTS: Clinical parameters of disease were reduced in B2-/- mice in comparison to wild type EAE mice. At day 14 after EAE induction, there was a significant decrease in the number of adherent leukocytes, a reduction of cerebral CCL5 and CCL2 expressions, and smaller inflammatory and degenerative changes in B2-/- mice when compared to WT. CONCLUSION: Our results suggest that B2 receptors have two major effects in the control of EAE severity: (i) B2 regulates the expression of chemokines, including CCL2 and CCL5, and (ii) B2 modulates leukocyte recruitment and inflammatory lesions in the CNS

    Kinin B1 and B2 receptor deficiency protects against obesity induced by a high-fat diet and improves glucose tolerance in mice

    Get PDF
    The kallikrein-kinin system is well known for its role in pain and inflammation, and has been shown recently by our group to have a role also in the regulation of energy expenditure. We have demonstrated that B1 receptor knockout (B1KO) mice are resistant to obesity induced by a high-fat diet (HFD) and that B1 receptor expression in adipocytes regulates glucose tolerance and predisposition to obesity. However, it is also known that in the absence of B1 receptor, the B2 receptor is overexpressed and can take over the function of its B1 counterpart, rendering uncertain the role of each kinin receptor in these metabolic effects. Therefore, we investigated the impact of ablation of each kinin receptor on energy metabolism using double kinin receptor knockout (B1B2KO) mice. Our data show that B1B2KO mice were resistant to HFD-induced obesity, with lower food intake and feed efficiency when compared with wild-type mice. They also had lower blood insulin and leptin levels and higher glucose tolerance after treatment with an HFD. Gene expression for tumor necrosis factor-alpha and C-reactive protein, which are important genes for insulin resistance, was reduced in white adipose tissue, skeletal muscle, and the liver in B1B2KO mice after the HFD. In summary, our data show that disruption of kinin B1 and B2 receptors has a profound impact on metabolic homeostasis in mice, by improving glucose tolerance and preventing HFD-induced obesity. These novel findings could pave the way for development of new pharmacological strategies to treat metabolic disorders such as insulin resistance and obesity

    Role of endothelial kinin B(1) receptor on the membrane potential of transgenic rat aorta

    Get PDF
    The kinin receptors are classically involved in inflammation, pain and sepsis. The effects of the kinin B(1) receptor agonist des-Arg(9)-bradykinin (DBK) and lipopolysaccharide (LPS) were investigated by comparing the membrane potential responses of aortic rings from transgenic rats overexpressing the kinin B1 receptor (B1R) in the endothelium (TGR(Tie2B1)) and Sprague Dawley (SD) rats. No difference in the resting membrane potential in the aorta's smooth muscle from the transgenic and SD rats was observed. The aorta rings from SD rats hyperpolarized only to LPS but not to DBK, whereas the aorta rings from TGR(Tie2B(1)) responded by the administration of both drugs. DBK and LPS responses were inhibited by the B(1) receptor antagonist R715 and by iberiotoxin in both cases. Thapsigargin induced a hyperpolarization in the smooth muscle of SD rats that was not reversed by R715, but was reversed by iberiotoxin and this hyperpolarization was further augmented by DBK administration. These results show that the model of overexpression of vascular B(1) receptors in the TGR(Tie2B(1)) rats represent a good model to study the role of functional B(1) receptors in the absence of any pathological stimulus. The data also show that K(Ca) channels are the final mediators of the hyperpolarizing responses to DBK and LPS. In addition, we suggest an interaction between the B1R and TLR4, since the hyperpolarization induced by LPS could be abolished in the presence of R715

    Angiotensin-converting enzyme inhibitor protects against cisplatin nephrotoxicity by modulating kinin B1 receptor expression and aminopeptidase P activity in mice

    Get PDF
    Cisplatin is a highly effective chemotherapeutic agent. However, its use is limited by nephrotoxicity. Enalapril is an angiotensin I-converting enzyme inhibitor used for the treatment of hypertension, mainly through the reduction of angiotensin II formation, but also through the increase of kinins half-life. Kinin B1 receptor is associated with inflammation and migration of immune cells into the injured tissue. We have previously shown that the deletion or blockage of kinin B1 and B2 receptors can attenuate cisplatin nephrotoxicity. In this study, we tested enalapril treatment as a tool to prevent cisplatin nephrotoxicity. Male C57Bl/6 mice were divided into 3 groups: control group; cisplatin (20 mg/kg i.p) group; and enalapril (1.5 mg;kg i.p) + cisplatin group. The animals were treated with a single dose of cisplatin and euthanized after 96 h. Enalapril was able to attenuate cisplatin-induced increase in creatinine and urea, and to reduce tubular injury and upregulation of apoptosis-related genes, as well as inflammatory cytokines in circulation and kidney. The upregulation of B1 receptor was blocked in enalapril + cisplatin group. Carboxypeptidase M expression, which generates B1 receptor agonists, is blunted by cisplatin + enalapril treatment. The activity of aminopeptidase P, a secondary key enzyme able to degrade kinins, is restored by enalapril treatment. These findings were confirmed in mouse renal epithelial tubular cells, in which enalaprilat (5 μM) was capable of decreasing tubular injury and inflammatory markers. We treated mouse renal epithelial tubular cells with cisplatin (100 μM), cisplatin+enalaprilat and cisplatin+enalaprilat+apstatin (10 μM). The results showed that cisplatin alone decreases cell viability, cisplatin plus enalaprilat is able to restore cell viability, and cisplatin plus enalaprilat and apstatin decreases cell viability. In the present study, we demonstrated that enalapril prevents cisplatin nephrotoxicity mainly by preventing the upregulation of B1 receptor and carboxypeptidase M and the increased concentrations of kinin peptides through aminopeptidase activity restoration

    Elastase-2, a tissue alternative pathway for angiotensin II generation, plays a role in circulatory sympathovagal balance in mice

    Get PDF
    In vitro and ex vivo experiments indicate that elastase-2 (ELA-2), a chymotrypsin-serine protease elastase family member 2A, is an alternative pathway for angiotensin II (Ang II) generation. However, the role played by ELA-2 in vivo is unclear. We examined ELA-2 knockout (ELA-2KO) mice compared to wild-type (WT) mice and determined whether ELA-2 played a role in hemodynamics [arterial pressure (AP) and heart rate (HR)], cardiocirculatory sympathovagal balance and baroreflex sensitivity. The variability of systolic arterial pressure (SAP) and pulse interval (PI) for evaluating autonomic modulation was examined for time and frequency domains (spectral analysis), whereas a symbolic analysis was also used to evaluate PI variability. In addition, baroreflex sensitivity was examined using the sequence method. Cardiac function was evaluated echocardiographically under anesthesia. The AP was normal whereas the HR was reduced in ELA-2KO mice (425 ± 17 vs. 512 ± 13 bpm from WT). SAP variability and baroreflex sensitivity were similar in both strains. The LF power from the PI spectrum (33.6 ± 5 vs. 51.8 ± 4.8 nu from WT) and the LF/HF ratio (0.60 ± 0.1 vs. 1.45 ± 0.3 from WT) were reduced, whereas the HF power was increased (66.4 ± 5 vs. 48.2 ± 4.8 nu from WT) in ELA-2KO mice, indicating a shift toward parasympathetic modulation of HR. Echocardiographic examination showed normal fractional shortening and an ejection fraction in ELA-2KO mice; however, the cardiac output, stroke volume, and ventricular size were reduced. These findings provide the first evidence that ELA-2 acts on the sympathovagal balance of the heart, as expressed by the reduced sympathetic modulation of HR in ELA-2KO mice

    O futuro da profissão de auditoria

    Get PDF
    Technology is evolving at an unbridled pace, some sectors are not failing to keep up with this evolution. It is estimated that the information processed worldwide in the last 2 years represents 90% of the total information ever created. Software is replacing professionals all over the world, mainly in areas such as accounting, routine data processing tasks are performed without human input and automatically. As the audit profession is highly dependent on data analysis, it is important to understand the impact that this evolution will have on the auditor's life. This dissertation aims to describe the audit profession in this context of global technological evolution. The literature review made it possible to fit into important theoretical concepts and understand how these concepts translate into the audit profession. With the empirical study carried out, the objective is to demonstrate the impacts of these new technologies on the auditor's life. The empirical study was supported by a research with a quantitative analysis, through the use of an inquiry. Through this, it was possible to conclude that the new technologies, despite presenting new risks for the external audit, also present themselves as an opportunity to develop works with more quality and efficiency.A tecnologia está a evoluir a um ritmo desenfreado, alguns setores não estão a conseguir acompanhar esta evolução. Estima-se que a informação processada mundialmente nos últimos 2 anos representa 90% do total de informação alguma vez criada. Softwares estão a substituir profissionais pelo mundo inteiro, principalmente em áreas como a contabilidade, tarefas rotineiras de processamento de dados são desempenhadas sem contributo humano e de forma automática. Sendo a profissão de auditoria altamente dependente de análise de dados é importante perceber o impacto que esta evolução terá na vida do auditor. Esta dissertação tem como finalidade descrever a profissão de auditoria neste contexto de evolução tecnológica global. A revisão de literatura efetuada permitiu enquadrar em importantes conceitos teóricos e perceber como esses conceitos se traduzem para a profissão de auditoria. Com o estudo empírico realizado, procurou-se demonstrar os impactos destas novas tecnologias na vida do auditor. O estudo empírico suportou-se numa pesquisa com uma análise quantitativa, através da utilização de um inquérito. Através deste, foi possível concluir que as novas tecnologias apesar de apresentarem novos riscos para a auditoria externa, também se apresentam como uma oportunidade para desenvolver trabalhos com mais qualidade e eficiência

    Kinin receptors regulate skeletal muscle regeneration: differential effects for B1 and B2 receptors

    Get PDF
    OBJECTIVE AND DESIGN: After traumatic skeletal muscle injury, muscle healing is often incomplete and produces extensive fibrosis. Bradykinin (BK) reduces fibrosis in renal and cardiac damage models through the B2 receptor. The B1 receptor expression is induced by damage, and blocking of the kallikrein-kinin system seems to affect the progression of muscular dystrophy. We hypothesized that both kinin B1 and B2 receptors could play a differential role after traumatic muscle injury, and the lack of the B1 receptor could produce more cellular and molecular substrates for myogenesis and fewer substrates for fibrosis, leading to better muscle healing. MATERIAL AND METHODS: To test this hypothesis, tibialis anterior muscles of kinin receptor knockout animals were subjected to traumatic injury. Myogenesis, angiogenesis, fibrosis, and muscle functioning were evaluated. RESULTS: Injured B1KO mice showed a faster healing progression of the injured area with a larger amount of central nucleated fiber post-injury when compared to control mice. In addition, they exhibited higher neovasculogenic capacity, maintaining optimal tissue perfusion for the post-injury phase; had higher amounts of myogenic markers with less inflammatory infiltrate and tissue destruction. This was followed by higher amounts of SMAD7 and lower amounts of p-SMAD2/3, which resulted in less fibrosis. In contrast, B2KO and B1B2KO mice showed more severe tissue destruction and excessive fibrosis. B1KO animals had better results in post-injury functional tests compared to control animals. CONCLUSIONS: We demonstrate that injured skeletal muscle tissues have a better repair capacity with less fibrosis in the presence of B2 receptor and absence of B1 receptor, including better performances in functional tests
    • …
    corecore