2,096 research outputs found

    A Stochastic Immersed Boundary Method for Fluid-Structure Dynamics at Microscopic Length Scales

    Full text link
    In this work it is shown how the immersed boundary method of (Peskin2002) for modeling flexible structures immersed in a fluid can be extended to include thermal fluctuations. A stochastic numerical method is proposed which deals with stiffness in the system of equations by handling systematically the statistical contributions of the fastest dynamics of the fluid and immersed structures over long time steps. An important feature of the numerical method is that time steps can be taken in which the degrees of freedom of the fluid are completely underresolved, partially resolved, or fully resolved while retaining a good level of accuracy. Error estimates in each of these regimes are given for the method. A number of theoretical and numerical checks are furthermore performed to assess its physical fidelity. For a conservative force, the method is found to simulate particles with the correct Boltzmann equilibrium statistics. It is shown in three dimensions that the diffusion of immersed particles simulated with the method has the correct scaling in the physical parameters. The method is also shown to reproduce a well-known hydrodynamic effect of a Brownian particle in which the velocity autocorrelation function exhibits an algebraic tau^(-3/2) decay for long times. A few preliminary results are presented for more complex systems which demonstrate some potential application areas of the method.Comment: 52 pages, 11 figures, published in journal of computational physic

    Parton showers as sources of energy-momentum deposition in the QGP and their implication for shockwave formation at RHIC and at the LHC

    Full text link
    We derive the distribution of energy and momentum transmitted from a primary fast parton and its medium-induced bremsstrahlung gluons to a thermalized quark-gluon plasma. Our calculation takes into account the important and thus far neglected effects of quantum interference between the resulting color currents. We use our result to obtain the rate at which energy is absorbed by the medium as a function of time and find that the rate is modified by the quantum interference between the primary parton and secondary gluons. This Landau-Pomeranchuk-Migdal type interference persists for time scales relevant to heavy ion phenomenology. We further couple the newly derived source of energy and momentum deposition to linearized hydrodynamics to obtain the bulk medium response to realistic parton propagation and splitting in the quark-gluon plasma. We find that because of the characteristic large angle in-medium gluon emission and the multiple sources of energy deposition in a parton shower, formation of well defined Mach cones by energetic jets in heavy ion reactions is not likely.Comment: 8 pages, 4 figure

    Connection between a possible fifth force and the direct detection of Dark Matter

    Full text link
    If there is a fifth force in the dark sector and dark sector particles interact non-gravitationally with ordinary matter, quantum corrections generically lead to a fifth force in the visible sector. We show how the strong experimental limits on fifth forces in the visible sector constrain the direct detection cross section, and the strength of the fifth force in the dark sector. If the latter is comparable to gravity, the spin-independent direct detection cross section must typically be <~ 10^{-55} cm^2. The anomalous acceleration of ordinary matter falling towards dark matter is also constrained: \eta_{OM-DM} <~ 10^{-8}.Comment: 4 pages, 2 figures. v3: contains a more detailed treatment of the spin-dependence of the effective interaction between dark matter and ordinary matte

    Anomalous Currents on Closed Surfaces: Extended Proximity, Partial Quantization, and Qubits

    Full text link
    Motivated by the surface of topological insulators, the Dirac anomaly's discontinuous dependence on sign of the mass, m/∣m∣m/|m|, is investigated on closed topologies when mass terms are weak or only partially cover the surface. It is found that, unlike the massive Dirac theory on an infinite plane, there is a smoothly decreasing current when the mass region is not infinite; also, a massive finite region fails to exhibit a Hall current edge--exerting an extended proximity effect, which can, however, be uniformly small--and oppositely orientated Hall phases are fully quantized while accompanied by diffuse chiral modes. Examples are computed using Dirac energy eigenstates on a flat torus (genus one topology) and closed cap cylinder (genus zero topology) for various mass-term geometries. Finally, from the resulting the properties of the surface spectra, a potential application for a flux-charge qubit is presented.Comment: 22 pages, 13 figures. References and focus updated. Added effective action arguments. Same text as published versio

    Why a splitting in the final state cannot explain the GSI-Oscillations

    Full text link
    In this paper, I give a pedagogical discussion of the GSI anomaly. Using two different formulations, namely the intuitive Quantum Field Theory language of the second quantized picture as well as the language of amplitudes, I clear up the analogies and differences between the GSI anomaly and other processes (the Double Slit experiment using photons, e+e−→μ+μ−e^+ e^- \to \mu^+ \mu^- scattering, and charged pion decay). In both formulations, the conclusion is reached that the decay rate measured at GSI cannot oscillate if only Standard Model physics is involved and the initial hydrogen-like ion is no coherent superposition of more than one state (in case there is no new, yet unknown, mechanism at work). Furthermore, a discussion of the Quantum Beat phenomenon will be given, which is often assumed to be able to cause the observed oscillations. This is, however, not possible for a splitting in the final state only.Comment: 10 pages, 3 figures; matches published version (except for some stylistic ambiguities

    One-loop counterterms in the Yang-Mills theory with gauge invariant ghost field Lagrangian

    Full text link
    One-loop calculations of renormalization constants in the model with gauge invariant ghost field Lagrangian are performed. It is shown that the model is asymptotically free and the renormalization constants satisfy the same equation as in the ordinary Yang-Mills theory.Comment: 11 pages, 6 figure

    Trident pair production in strong laser pulses

    Full text link
    We calculate the trident pair production amplitude in a strong laser background. We allow for finite pulse duration, while still treating the laser fields nonperturbatively in strong-field QED. Our approach reveals explicitly the individual contributions of the one-step and two-step processes. We also expose the role gauge invariance plays in the amplitudes and discuss the relation between our results and the optical theorem.Comment: 4 pages, 1 .eps figure. Version 2: reference added, published versio

    Five-Dimensional QED, Muon Pair Production and Correction to the Coulomb Potential

    Full text link
    We consider QED in five dimensions in a configuration where matter is localized on a 3-brane while foton propagates in the bulk. The idea is to investigate the effects of the Kaluza-Klein modes of the photon in the relativistic regime, but in low energy, and in the nonrelativistic regime. In the relativistic regime, we calculate the cross section for the reaction e++e−→μ++μ−e^+ + e^- \to \mu^+ + \mu^-. We compare our theoretical result with a precise measurement of this cross section at s=57.77\sqrt{s}=57.77 GeV. As result, we extract a lower bound on the size of the extra dimension. In the nonrelativistic regime, we derive the contribution for the Coulomb potential due to the whole tower of the Kaluza-Klein excited modes of the photon. We use the modified potential to calculate the Rutherford scattering differential cross section.Comment: minor changes, three new refs. added, to appear in IJMP

    The Kondo crossover in shot noise of a single quantum dot with orbital degeneracy

    Full text link
    We investigate out of equilibrium transport through an orbital Kondo system realized in a single quantum dot, described by the multiorbital impurity Anderson model. Shot noise and current are calculated up to the third order in bias voltage in the particle-hole symmetric case, using the renormalized perturbation theory. The derived expressions are asymptotically exact at low energies. The resulting Fano factor of the backscattering current FbF_b is expressed in terms of the Wilson ratio RR and the orbital degeneracy NN as Fb=1+9(N−1)(R−1)21+5(N−1)(R−1)2F_b =\frac{1 + 9(N-1)(R-1)^2}{1 + 5(N-1)(R-1)^2} at zero temperature. Then, for small Coulomb repulsions UU, we calculate the Fano factor exactly up to terms of order U5U^5, and also carry out the numerical renormalization group calculation for intermediate UU in the case of two- and four-fold degeneracy (N=2, 4N=2,\,4). As UU increases, the charge fluctuation in the dot is suppressed, and the Fano factor varies rapidly from the noninteracting value Fb=1F_b=1 to the value in the Kondo limit Fb=N+8N+4F_b=\frac{N+8}{N+4}, near the crossover region U∼πΓU\sim \pi \Gamma, with the energy scale of the hybridization Γ\Gamma.Comment: 10 pages, 4 figure

    Gauge invariance in two-particle scattering

    Get PDF
    It is shown how gauge invariance is obtained for the coupling of a photon to a two-body state described by the solution of the Bethe-Salpeter equation. This is illustrated both for a complex scalar field theory and for interaction kernels derived from chiral effective Lagrangians.Comment: 16 pages, 2 figures, references added and commented o
    • …
    corecore