132 research outputs found

    Oseledets' Splitting of Standard-like Maps

    Get PDF
    For the class of differentiable maps of the plane and, in particular, for standard-like maps (McMillan form), a simple relation is shown between the directions of the local invariant manifolds of a generic point and its contribution to the finite-time Lyapunov exponents (FTLE) of the associated orbit. By computing also the point-wise curvature of the manifolds, we produce a comparative study between local Lyapunov exponent, manifold's curvature and splitting angle between stable/unstable manifolds. Interestingly, the analysis of the Chirikov-Taylor standard map suggests that the positive contributions to the FTLE average mostly come from points of the orbit where the structure of the manifolds is locally hyperbolic: where the manifolds are flat and transversal, the one-step exponent is predominantly positive and large; this behaviour is intended in a purely statistical sense, since it exhibits large deviations. Such phenomenon can be understood by analytic arguments which, as a by-product, also suggest an explicit way to point-wise approximate the splitting.Comment: 17 pages, 11 figure

    Topological Magneto-Electric Effect Decay

    Full text link
    We address the influence of realistic disorder on the effective magnetic monopole that is induced near the surface of an ideal topological insulator (TI) by azimuthal currents which flow in response to a suddenly introduced external electric charge. We show that when the longitudinal conductivity σxx=g(e2/h)\sigma_{xx} = g (e^2/h) is accounted for, the apparent position of a magnetic monopole initially retreats from the TI surface at speed vM=αcgv_{M} = \alpha c g, where α\alpha is the fine structure constant and cc is the speed of light. For the particular case of TI surface states described by a massive Dirac model, we further find that the temperature T=0 Hall currents vanish once the surface charge has been redistributed to screen the external potential.Comment: 4.5 pages, 1 figur

    Proving The Ergodic Hypothesis for Billiards With Disjoint Cylindric Scatterers

    Full text link
    In this paper we study the ergodic properties of mathematical billiards describing the uniform motion of a point in a flat torus from which finitely many, pairwise disjoint, tubular neighborhoods of translated subtori (the so called cylindric scatterers) have been removed. We prove that every such system is ergodic (actually, a Bernoulli flow), unless a simple geometric obstacle for the ergodicity is present.Comment: 24 pages, AMS-TeX fil

    Dynamical ensembles in stationary states

    Full text link
    We propose as a generalization of an idea of Ruelle to describe turbulent fluid flow a chaotic hypothesis for reversible dissipative many particle systems in nonequilibrium stationary states in general. This implies an extension of the zeroth law of thermodynamics to non equilibrium states and it leads to the identification of a unique distribution \m describing the asymptotic properties of the time evolution of the system for initial data randomly chosen with respect to a uniform distribution on phase space. For conservative systems in thermal equilibrium the chaotic hypothesis implies the ergodic hypothesis. We outline a procedure to obtain the distribution \m: it leads to a new unifying point of view for the phase space behavior of dissipative and conservative systems. The chaotic hypothesis is confirmed in a non trivial, parameter--free, way by a recent computer experiment on the entropy production fluctuations in a shearing fluid far from equilibrium. Similar applications to other models are proposed, in particular to a model for the Kolmogorov--Obuchov theory for turbulent flow.Comment: 31 pages, 3 figures, compile with dvips (otherwise no pictures

    (Non)Invariance of dynamical quantities for orbit equivalent flows

    Full text link
    We study how dynamical quantities such as Lyapunov exponents, metric entropy, topological pressure, recurrence rates, and dimension-like characteristics change under a time reparameterization of a dynamical system. These quantities are shown to either remain invariant, transform according to a multiplicative factor or transform through a convoluted dependence that may take the form of an integral over the initial local values. We discuss the significance of these results for the apparent non-invariance of chaos in general relativity and explore applications to the synchronization of equilibrium states and the elimination of expansions

    Natural equilibrium states for multimodal maps

    Full text link
    This paper is devoted to the study of the thermodynamic formalism for a class of real multimodal maps. This class contains, but it is larger than, Collet-Eckmann. For a map in this class, we prove existence and uniqueness of equilibrium states for the geometric potentials tlogDf-t \log|Df|, for the largest possible interval of parameters tt. We also study the regularity and convexity properties of the pressure function, completely characterising the first order phase transitions. Results concerning the existence of absolutely continuous invariant measures with respect to the Lebesgue measure are also obtained

    Nontrivial Dynamics in the Early Stages of Inflation

    Get PDF
    Inflationary cosmologies, regarded as dynamical systems, have rather simple asymptotic behavior, insofar as the cosmic baldness principle holds. Nevertheless, in the early stages of an inflationary process, the dynamical behavior may be very complex. In this paper, we show how even a simple inflationary scenario, based on Linde's ``chaotic inflation'' proposal, manifests nontrivial dynamical effects such as the breakup of invariant tori, formation of cantori and Arnol'd's diffusion. The relevance of such effects is highlighted by the fact that even the occurrence or not of inflation in a given Universe is dependent upon them.Comment: 26 pages, Latex, 9 Figures available on request, GTCRG-94-1

    Decay of correlations for maps with uniformly contracting fibers and logarithm law for singular hyperbolic attractors

    Full text link
    We consider two dimensional maps preserving a foliation which is uniformly contracting and a one dimensional associated quotient map having exponential convergence to equilibrium (iterates of Lebesgue measure converge exponentially fast to physical measure). We prove that these maps have exponential decay of correlations over a large class of observables. We use this result to deduce exponential decay of correlations for the Poincare maps of a large class of singular hyperbolic flows. From this we deduce logarithm laws for these flows.Comment: 39 pages; 03 figures; proof of Theorem 1 corrected; many typos corrected; improvements on the statements and comments suggested by a referee. Keywords: singular flows, singular-hyperbolic attractor, exponential decay of correlations, exact dimensionality, logarithm la
    corecore