1,448 research outputs found

    Orthogonal Surface Tags for Whole-Cell Biocatalysis

    Get PDF

    Surface Display of Complex Enzymes by in Situ SpyCatcher-SpyTag Interaction

    Get PDF
    The display of complex proteins on the surface of cells is of great importance for protein engineering and other fields of biotechnology. Herein, we describe a modular approach, in which the membrane anchor protein Lpp-OmpA and a protein of interest (passenger) are expressed independently as genetically fused SpyCatcher and SpyTag units and assembled in situ by post-translational coupling. Using fluorescent proteins, we first demonstrate that this strategy allows the construct to be installed on the surface of E. coli cells. The scope of our approach was then demonstrated by using three different functional enzymes, the stereoselective ketoreductase Gre2p, the homotetrameric glucose 1-dehydrogenase GDH, and the bulky heme- and diflavin-containing cytochrome P450 BM3 (BM3). In all cases, the SpyCatcher-SpyTag method enabled the generation of functional whole-cell biocatalysts, even for the bulky BM3, which could not be displayed by conventional fusion with Lpp-OmpA. Furthermore, by using a GDH variant carrying an internal SpyTag, the system could be used to display an enzyme with unmodified N- and C-termini

    Itinerant Magnetism in the Triangular Lattice Hubbard Model at Half-doping: Application to Twisted Transition-Metal Dichalcogenides

    Full text link
    We use unrestricted Hartree-Fock, density matrix renormalization group, and variational projected entangled pair state calculations to investigate the ground state phase diagram of the triangular lattice Hubbard model at "half doping" relative to single occupancy, i.e. at a filling of (1±12)(1\pm \frac{1}{2}) electrons per site. The electron-doped case has a nested Fermi surface in the non-interacting limit, and hence a weak-coupling instability towards density-wave orders whose wavevectors are determined by Fermi surface nesting conditions. We find that at moderate to strong interaction strengths other spatially-modulated orders arise, with wavevectors distinct from the nesting vectors. In particular, we identify a series closely-competing itinerant long-wavelength magnetically ordered states, yielding to uniform ferromagnetic order at the largest interaction strengths. For half-hole doping and a similar range of interaction strengths, our data indicate that magnetic orders are most likely absent.Comment: 4+2 page

    Performance of the EUDET-type beam telescopes

    Full text link
    Test beam measurements at the test beam facilities of DESY have been conducted to characterise the performance of the EUDET-type beam telescopes originally developed within the EUDET project. The beam telescopes are equipped with six sensor planes using MIMOSA26 monolithic active pixel devices. A programmable Trigger Logic Unit provides trigger logic and time stamp information on particle passage. Both data acquisition framework and offline reconstruction software packages are available. User devices are easily integrable into the data acquisition framework via predefined interfaces. The biased residual distribution is studied as a function of the beam energy, plane spacing and sensor threshold. Its standard deviation at the two centre pixel planes using all six planes for tracking in a 6\,GeV electron/positron-beam is measured to be (2.88\,\pm\,0.08)\,\upmu\meter.Iterative track fits using the formalism of General Broken Lines are performed to estimate the intrinsic resolution of the individual pixel planes. The mean intrinsic resolution over the six sensors used is found to be (3.24\,\pm\,0.09)\,\upmu\meter.With a 5\,GeV electron/positron beam, the track resolution halfway between the two inner pixel planes using an equidistant plane spacing of 20\,mm is estimated to (1.83\,\pm\,0.03)\,\upmu\meter assuming the measured intrinsic resolution. Towards lower beam energies the track resolution deteriorates due to increasing multiple scattering. Threshold studies show an optimal working point of the MIMOSA26 sensors at a sensor threshold of between five and six times their RMS noise. Measurements at different plane spacings are used to calibrate the amount of multiple scattering in the material traversed and allow for corrections to the predicted angular scattering for electron beams

    Valency engineering of monomeric enzymes for self-assembling biocatalytic hydrogels

    Get PDF
    All-enzyme hydrogels are efficient reagents for continuous flow biocatalysis. These materials can be obtained by self-assembly of two oligomeric enzymes, modified with the complementary SpyTag and SpyCatcher units. To facilitate access to the large proportion of biocatalytically relevant monomeric enzymes, we demonstrate that the tagging valency of the monomeric (S)-stereoselective ketoreductase Gre2p from Saccharomyces cerevisiae can be designed to assemble stable, active hydrogels with the cofactor-regenerating glucose 1-dehydrogenase GDH from Bacillus subtilis. Mounted in microfluidic reactors, these gels revealed high conversion rates and stereoselectivity in the reduction of prochiral methylketones under continuous flow for more than 8 days. The sequential use as well as parallelization by ‘numbering up’ of the flow reactor modules demonstrate that this approach is suitable for syntheses on the semipreparative scale

    ESR Operation and Development

    Get PDF
    • 

    corecore