1,526 research outputs found

    Critical Properties of the One-Dimensional Forest-Fire Model

    Full text link
    The one-dimensional forest-fire model including lightnings is studied numerically and analytically. For the tree correlation function, a new correlation length with critical exponent \nu ~ 5/6 is found by simulations. A Hamiltonian formulation is introduced which enables one to study the stationary state close to the critical point using quantum-mechanical perturbation theory. With this formulation also the structure of the low-lying relaxation spectrum and the critical behaviour of the smallest complex gap are investigated numerically. Finally, it is shown that critical correlation functions can be obtained from a simplified model involving only the total number of trees although such simplified models are unable to reproduce the correct off-critical behaviour.Comment: 24 pages (plain TeX), 4 PostScript figures, uses psfig.st

    On single-copy entanglement

    Full text link
    The largest eigenvalue of the reduced density matrix for quantum chains is shown to have a simple physical interpretation and power-law behaviour in critical systems. This is verified numerically for XXZ spin chains.Comment: 4 pages, 2 figures, note added, typo correcte

    Temperature driven crossover phenomena in the correlation lengths of the one-dimensional t-J model

    Full text link
    We describe a modified transfer matrix renormalization group (TMRG) algorithm and apply it to calculate thermodynamic properties of the one-dimensional t-J model. At the supersymmetric point we compare with Bethe ansatz results and make direct connection to conformal field theory (CFT). In particular we study the crossover from the non-universal high T lattice into the quantum critical regime by calculating various correlation lengths and static correlation functions. Finally, the existence of a spin-gap phase is confirmed.Comment: 7 pages, 7 figure

    Evolution of entanglement after a local quench

    Full text link
    We study free electrons on an infinite half-filled chain, starting in the ground state with a bond defect. We find a logarithmic increase of the entanglement entropy after the defect is removed, followed by a slow relaxation towards the value of the homogeneous chain. The coefficients depend continuously on the defect strength.Comment: 14 pages, 9 figures, final versio

    Calculation of reduced density matrices from correlation functions

    Full text link
    It is shown that for solvable fermionic and bosonic lattice systems, the reduced density matrices can be determined from the properties of the correlation functions. This provides the simplest way to these quantities which are used in the density-matrix renormalization group method.Comment: 4 page

    Optical Zener-Bloch oscillations in binary waveguide arrays

    Get PDF
    Zener tunneling in a binary array of coupled optical waveguides with transverse index gradient is shown to produce a sequence of regular or irregular beam splitting and beam recombination events superimposed to Bloch oscillations. These periodic or aperiodic Zener-Bloch oscillations provide a clear and visualizable signature in an optical system of coherent multiband dynamics encountered in solid-state or matter-wave system

    On the relation between entanglement and subsystem Hamiltonians

    Full text link
    We show that a proportionality between the entanglement Hamiltonian and the Hamiltonian of a subsystem exists near the limit of maximal entanglement under certain conditions. Away from that limit, solvable models show that the coupling range differs in both quantities and allow to investigate the effect.Comment: 7 pages, 2 figures version2: minor changes, typos correcte

    Discrete gap solitons in modulated waveguide arrays

    Full text link
    We suggest a novel concept of diffraction management in waveguide arrays and predict the existence of discrete gap solitons that possess the properties of both conventional discrete and Bragg grating solitons. We demonstrate that both the soliton velocity and propagation direction can be controlled by varying the input light intensity.Comment: 4 pages, 3 figure

    Reduced density matrix and entanglement entropy of permutationally invariant quantum many-body systems

    Full text link
    In this paper we discuss the properties of the reduced density matrix of quantum many body systems with permutational symmetry and present basic quantification of the entanglement in terms of the von Neumann (VNE), Renyi and Tsallis entropies. In particular, we show, on the specific example of the spin 1/21/2 Heisenberg model, how the RDM acquires a block diagonal form with respect to the quantum number kk fixing the polarization in the subsystem conservation of SzS_{z} and with respect to the irreducible representations of the Sn\mathbf{S_{n}} group. Analytical expression for the RDM elements and for the RDM spectrum are derived for states of arbitrary permutational symmetry and for arbitrary polarizations. The temperature dependence and scaling of the VNE across a finite temperature phase transition is discussed and the RDM moments and the R\'{e}nyi and Tsallis entropies calculated both for symmetric ground states of the Heisenberg chain and for maximally mixed states.Comment: Festschrift in honor of the 60th birthday of Professor Vladimir Korepin (11 pages, 5 figures

    Area law and vacuum reordering in harmonic networks

    Full text link
    We review a number of ideas related to area law scaling of the geometric entropy from the point of view of condensed matter, quantum field theory and quantum information. An explicit computation in arbitrary dimensions of the geometric entropy of the ground state of a discretized scalar free field theory shows the expected area law result. In this case, area law scaling is a manifestation of a deeper reordering of the vacuum produced by majorization relations. Furthermore, the explicit control on all the eigenvalues of the reduced density matrix allows for a verification of entropy loss along the renormalization group trajectory driven by the mass term. A further result of our computation shows that single-copy entanglement also obeys area law scaling, majorization relations and decreases along renormalization group flows.Comment: 15 pages, 6 figures; typos correcte
    • …
    corecore