124 research outputs found

    Surface-induced cubic anisotropy in nanomagnets

    Full text link
    We investigate the effect of surface anisotropy in a spherical many-spin magnetic nanoparticle. By computing minor loops, two-dimensional (2D) and 3D energyscape, and by investigating the behavior of the net magnetization, we show that in the case of not too strong surface anisotropy the behavior of the many-spin particle may be modeled by that of a macrospin with an effective energy containing uniaxial and cubic anisotropy terms. This holds for both the transverse and N\'eel's surface anisotropy models.Comment: 7 pages, 8 figure

    Reorientation kinetics of superparamagnetic nanostructured rods

    Full text link
    The attractive interactions between oppositely charged species (colloids, macromolecules etc) dispersed in water are strong, and the direct mixing of solutions containing such species generally yields to a precipitation, or to a phase separation. We have recently developed means to control the electrostatically-driven attractions between nanoparticles and polymers in water, and at the same time to preserve the stability of the dispersions. We give here an account of the formation of supracolloidal aggregates obtained by co-assembly of 7 nm particles with copolymers. Nanostructured rods of length comprised between 5 and 50 microns and diameter 500 nm were investigated. By application of a magnetic field, the rods were found to reorient along with the magnetic field lines. The kinetics of reorientation was investigated using step changes of the magnetic field of amplitude 90 degrees. From the various results obtained, among which an exponential decay of the tangent of the angle made between the rod and the field, we concluded that the rods are superparamagnetic.Comment: 12 pages - 452kB 7 - figures - 1 Table will be published in Journal of Physics : Condensed Matte

    Field induced anisotropic cooperativity in a magnetic colloidal glass

    Full text link
    The translational dynamics in a repulsive colloidal glass-former is probed by time-resolved X-ray Photon Correlation Spectroscopy. In this dense dispersion of charge-stabilized and magnetic nanoparticles, the interaction potential can be tuned, from quasi-isotropic to anisotropic by applying an external magnetic field. Structural and dynamical anisotropies are reported on interparticle lengthscales associated with highly anisotropic cooperativity, almost two orders of magnitude larger in the field direction than in the perpendicular direction and in zero field

    Observation of superspin glass state in magnetically textured ferrofluid (gamma-Fe2O3)

    Get PDF
    Magnetic properties in a magnetically textured ferrofluid made out of interacting maghemite (gamma-Fe2O3) nanoparticles suspended in glycerin have been investigated. Despite the loss of uniform distribution of anisotropy axes, a superspin glass state exists at low temperature in a concentrated, textured ferrofluid as in the case of its non-textured counterpart. The onset of superspin glass state was verified from the sample's AC susceptibility. The influence of the anisotropy axis orientation on the aging behavior in the glassy states is also discussed

    Capillary-gravity wave resistance in ordinary and magnetic fluids

    Get PDF
    Wave resistance is the drag force associated to the emission of waves by a moving disturbance at a fluid free surface. In the case of capillary-gravity waves it undergoes a transition from zero to a finite value as the speed of the disturbance is increased. For the first time an experiment is designed in order to obtain the wave resistance as a function of speed. The effect of viscosity is explored, and a magnetic fluid is used to extend the available range of critical speeds. The threshold values are in good agreement with the proposed theory. Contrary to the theoretical model, however, the measured wave resistance reveals a non monotonic speed dependence after the threshold.Comment: 12 pages, 4 figures, 1 table, submitted to Physical Review Letter

    Exchange bias properties and surface spin freezing in magnetic nanoparticles

    Get PDF
    AbstractZFC and FC magnetization measurements versus field are carried out on manganese ferrite based nanoparticles with a mean diameter of 3.3 nm. The exchange bias field determined from the field shift of hysteresis loops, decreases as the cooling field increases. Magnetization measurements performed at constant applied field H as a function of temperature allows us to separate two H-dependent contributions. One is associated to the well ordered core which inflates as the field increases and the other is related to surface spins frozen in a disordered structure. The thermal dependence of this disordered surface contribution decreases exponentially with a freezing temperature Tf, which decreases as the applied field increases

    Electrostatic co-assembly of iron oxide nanoparticles and polymers : towards the generation of highly persistent superparamagnetic nanorods

    Full text link
    A paradigm proposed recently by Boal et al. (A.K. Boal et al., Nature 404, 746-748, 2000) deals with the possibility to use inorganic nanoparticles as building blocks for the design and fabrication of colloidal and supracolloidal assemblies. It is anticipated that these constructs could be made of different shapes, patterns and functionalities and could constitute the components of future nanodevices including sensors, actuators or nanocircuits. Here we report a protocol that allowed us to fabricate such nanoparticle aggregates. The building blocks of the constructs were anionically coated iron oxide nanocrytals (superparamagnetic, size 7 nm) and cationic-neutral block copolymers. We have shown that the electrostatic interactions between charged species can be controlled by tuning the ionic strength of the dispersion. Under appropriate conditions, the control of electrostatics resulted in the elaboration of spherical or elongated aggregates at the micrometer length scale. The elongated aggregates were found to be rod-like, with diameters of a few hundred nanometers and lengths between 1 and 50 micrometers. In addition to their remarkable stiffness, the nanostructured rods were found to reorient along with an externally applied magnetic field, in agreement with the laws of superparamagnetism.Comment: 6 pages, 5 figures, appeared in Advanced materials in September 2008, reference

    Universal scattering behavior of co-assembled nanoparticle-polymer clusters

    Full text link
    Water-soluble clusters made from 7 nm inorganic nanoparticles have been investigated by small-angle neutron scattering. The internal structure factor of the clusters was derived and exhibited a universal behavior as evidenced by a correlation hole at intermediate wave-vectors. Reverse Monte-Carlo calculations were performed to adjust the data and provided an accurate description of the clusters in terms of interparticle distance and volume fraction. Additional parameters influencing the microstructure were also investigated, including the nature and thickness of the nanoparticle adlayer.Comment: 5 pages, 4 figures, paper published in Physical Review
    • …
    corecore