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Abstract 

ZFC and FC magnetization measurements versus field are carried out on manganese ferrite based nanoparticles with a mean 

diameter of 3.3 nm. The exchange bias field determined from the field shift of hysteresis loops, decreases as the cooling field 

increases. Magnetization measurements performed at constant applied field H as a function of temperature allows us to separate 

two H-dependent contributions. One is associated to the well ordered core which inflates as the field increases and the other is 

related to surface spins frozen in a disordered structure. The thermal dependence of this disordered surface contribution decreases 

exponentially with a freezing temperature Tf, which decreases as the applied field increases. 
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1. Introduction  

 

M

experimental points of view. This interest is mainly due to their unique and striking features, which make them 

suitable for a large range of applicatio

core/shell structure because of their finite-size and surface effects [3]. In previous studies [4,5,6], the manganese 

-

structure. It consists of a well-ordered ferrimagnetic core surrounded by a surface layer of spins randomly frozen in 

a spin glass-like manner. Field and size dependencies of this disordered contribution have been studied by 

Mössbauer spectroscopy. These studies have shown a progressive spin alignment along the ferrite core [6], 

quantifying the under-field variations of the shell thickness and the unidirectional exchange through the core-shell 
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interface with a constant KEa=2.5x10
-4

 J/m
2
, which is close to the one expected for a ferromagnetic/ 

antiferromagnetic (FM/AFM) interface. 

This exchange coupling between the ordered core and the disordered surface let suspect exchange bias properties 

for these manganes - for core/shell nanoparticles consisting of a FM core/AFM shell, or - at 

core/shell interfaces involving either a ferrimagnetic (FI) structure (FI/AFM, FM/FI) or a spin-glass one [7,8].  

In this context, we present here magnetization measurements under different cooling field conditions, in order to 

which is deduced from high field magnetization. 

 

2. Experiment 

  

The MnFe2O4 based NP´s are prepared by hydrothermal coprecipitation and then, dispersed in acid medium, 

thanks to a surface treatment which provides iron enrichment at the nanoparticle surface. A chemical core/shell 

model allows deducing the nanoparticle volume fraction [9]. The crystalline structure, as well as the mean diameter 

(3.3 nm), are determined from X-ray diffraction patterns.  

 Previous under-field Mössbauer measurements  performed on NiFe2O4 based NP´s show that the fraction of 

disordered spins decreases while the applied field increases [5]. A possible interpretation is a shift-out of the core-

shell interface due to the gradual alignment of the spins in the shell along the applied field and thus along the core 

direction. A linear extrapolation of these data shows that the complete alignment of spins would require a field 

around 60 In 

this paper, magnetization measurements are carried out using both SQUID and VSM devices. The thermal 

dependence of Zero Field Cooling (ZFC) magnetization is obtained from 5 to 300 K under an applied field varying 

between 2 T and 8 T. ZFC and FC (Field Cooled) hysteresis loops are taken at 5K, with two different FC conditions. 

Our magnetic fluid sample is diluted enough and presents the structure of a gas of individual particles at room 

temperature [10], structure which is frozen-in by the temperature quench of the sample in the SQUID or in the VSM. 

 

3. Results and Discussion 

 

The shape of the ZFC magnetization loop (see figure 1a) corresponds to a typical disordered and frustrated 

system. Indeed for coherent reversal of ordered core spins the hysteresis loop would be a perfect square [3]. It is the 

progressive alignment of surface spins along the field direction that dominates the reversal behavior of the particle 

moment. When the sample is cooled in the presence of 1T field the hysteresis loop is left shifted showing a negative 

exchange bias related to the coupling between the ferrimagnetic ordered core and the disordered surface layer (see 

figure 1b). Figure 1(b) presents a magnification of the hysteresis loop  around the coercitive fields and allow to 

determine the exchange bias field value, through Hex=(Hright+Hleft)/2 Hright and Hleft being the points where the loop 

intersects the field axis. The Exchange Bias fields (in absolute values) are 0Hex=6x10
-3

 T and 0Hex= 1,1x10
-3

 T for 

cooling field, 0Hcool= 1 and 5 T respectively. This exchange bias phenomenon is expected to depend on the strength 

of the cooling field Hcool. For low cooling field values, the exchange bias field first increases when Hcool increases 

due to the enhancement in the alignment degree of the core spins. For higher cooling field values the Zeeman 

coupling between the field and surface spins increases until dominating the magnetic interactions inside the particles, 

then leading to a decrease of the exchange bias field. The presence of a maximum in the Hex variations is usually 

considered as an effective depinning threshold, above which magnetic interactions are overcome by the Zeeman 

coupling [11]. Figure 1(b) illustrates this higher field behavior as we observe a decrease of the hysteresis shift when 

the cooling field increases from 1 to 5 T. 
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FIG. 1: (a) ZFC and FC (1T) hysteresis loop. (b) Shift of the hysteresis loop under two cooling field conditions. 

 

-

of independent nanoparticles allow separating the core and surface contributions. Figure 2  presents the high field 

magnetization obtained at  0H = 2T and 0H = 8T as a function of the temperature. In both cases, we can describe 

the thermal variations of the magnetization according to the following equation [4, 12] written at constant H: 

 

( ) (0) 1 ( )m T m BT m T   (1) 

 

At high temperatures, the smooth variations are well reproduced by the first term which corresponds to a 

modified Bloch's law accounting for the thermal dependence of 

as in reference 4 by fitting a log-log representation of m(0)-m(T), is found to be approximately equals to 2. This 

large value, compared to the 3/2 bulk reference, is attributed to the spatial confinement at nanoscale in these 3.3 nm 

magnetically ordered particle core [13]. This core contribution is therefore expected to be independent on the field 

strength. However a core magnetization m(0) as T tends to zero is found to be 230 kA/m at 0H = 2T and 310 kA/m 

at 0H = 8T. The relative increase m(0)/m(0) could be associated to a reduction (0) 6 (0)RXe d m m of the shell 

thickness of the order of 0.17 nm, in quantitative agreement with the under-field Mössbauer measurements of [5] on 

Ni ferrite nanoparticles of comparable size. It should thus be ascribed to a core inflation as the field increases. 

At low temperatures, the magnetization variations m(T) at constant H are dominated by the progressive freezing 

of disordered surface spins. This is characterized by the steep upturn of the magnetization thermal variation 

observed at temperatures lower than 70 K. Whatever the field strength, the surface contribution to the total 

magnetization m(T) is well accounted for by a reduced exponential behavior ( ) exp Fm T T T [4]. The inset 

of Figure 2  shows that the thermal variations of the surface magnetization normalized to its value at 5 K also 

depends on the field strength, while keeping the same exponential shape with a field-dependent Tf.  

 

 

 

 

 

 

FIG. 2: High Field Magnetization Thermal Dependence, the inset shows the reduced exponential behavior of surface contribution for the 

magnetization at 2T and 8T. 
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The fitted values of the freezing temperature Tf decrease, from 22 K to 12 K, while increasing 0H from 2 to 8T. 

It shows that the energy kBTf, intimately related to the superexchange interactions which pin the interacting spins in 

the frozen disordered layer, is smaller for large applied field. That well agrees with a smaller exchange bias field for 

larger cooling field and the observed progressive alignment of the surface spins along their core counterparts. It 

therefore suggests a delicate balance between exchange interaction and local anisotropy at the core-shell interface. 

 

4. Conclusion 

 

We have shown that the FC hysteresis loop of magnetic nanocolloid presents a negative exchange bias which 

decreases (in high fields) as the cooling field increases. This behavior is associated to the alignment along the field 

direction of disordered surface spins. The thermal variations of the magnetization are also field-dependent. At high 

temperatures, the modified Bloch law is well followed using a magnetization m(0) which decreases as H decreases, 

associated to a reduction of the shell thickness. The low temperature contribution reflects the freezing of surface 

spins and is well described with a freezing temperature Tf, decreasing as  H increases. 
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