122 research outputs found

    Rheological changes in melts and magmas induced by crystallization and strain rate

    Get PDF
    This review highlights the rheological and phase proportions variation induced by cooling events from superliquidus temperature (melt) to subliquidus temperatures. It provides a comprehensive view of the rheological response of magmatic systems undergoing dynamic cooling and shear deformation. The two main parameters which are of importance to model the rheological properties of such crystallizing systems and which are simultaneously poorly investigated so far are crystallization and strain rates. The response to relatively high deformation rates results in shear thinning behavior in partly crystallized systems under variable shear rate and it should be considered in magmatic processes. Due to the sluggish crystallization of SiO2-rich melts, data are mainly available for mafic systems, which does not allow a general reappraisal. An attempt to model available literature data for less evolved systems in dynamic scenarios and a comparison with MELTS algorithm approach (thermodynamic equilibrium conditions) is provided. Since there are difficulties in comparing experimental data gained using different methodologies, we focus mainly on data obtained with the concentric cylinder technique. This highlights the fact that a general experimental protocol is needed in order to compare and model viscosity data to predict the dynamic rheological evolution for volcanic rocks. © Académie des sciences, Paris and the authors, 2022. Some rights reserved

    Determination of travertine provenance from ancient buildings using self-organizing maps and fuzzy logic

    Get PDF
    This work is focused on determining provenance of travertine stones employed in the construction of some important monuments in Umbria (Italy) using two systems that use concepts and algorithms inherent to Artificial Intelligence: Kohonen self-organizing maps and fuzzy logic. The two systems have been applied to travertine samples belonging to quarries known to be sites of excavation from ancient times and monuments. Tests on quarry samples show a good discriminative power of both methods to recognize the exact provenance of most samples. The application of the systems to monument samples show that most of employed travertine stones were quarried from outcrops occurring in areas close to the towns where monuments have been erected. Results are in good agreement with historical data

    Water-enhanced interdiffusion of major elements between natural shoshonite and high-K rhyolite melts

    Full text link
    The interdiffusion of six major elements (Si, Ti, Fe, Mg, Ca, K) between natural shoshonite and a high-K calc-alkaline rhyolite (Vulcano island, Aeolian archipelago, Italy) has been experimentally measured by the diffusion couple technique at 1200{\deg}C, pressures from 50 to 500 MPa and water contents from 0.3 (nominally dry) to 2 wt%. The experiments were carried out in an internally heated pressure vessel, and major element profiles were later acquired by electron probe microanalysis. The concentration-distance profiles are evaluated using a concentration-dependent diffusivity approach. Effective binary diffusion coefficients for four intermediate silica contents are obtained by the Sauer-Freise modified Boltzmann-Matano method. At the experimental temperature and pressures, the diffusivity of all studied elements notably increases with dissolved H2O content. Particularly, diffusion is up to 1.4 orders of magnitude faster in a melt containing 2 wt.% H2O than in nominally dry melts. This effect is slightly enhanced in the more mafic compositions. Uphill diffusion was observed for Al, while all other elements can be described by the concept of effective binary interdiffusion. Ti is the slowest diffusing element through all experimental conditions and compositions, followed by Si. Fe, Mg, Ca and K diffuse at similar rates but always more rapidly than Si and Ti. This trend suggests a strong coupling between melt components. Since effects of composition (including water content) are dominant, a pressure effect on diffusion cannot be clearly resolved in the experimental pressure range

    Concentration variance decay during magma mixing: a volcanic chronometer

    Get PDF
    The mixing of magmas is a common phenomenon in explosive eruptions. Concentration variance is a useful metric of this process and its decay (CVD) with time is an inevitable consequence during the progress of magma mixing. In order to calibrate this petrological/volcanological clock we have performed a time-series of high temperature experiments of magma mixing. The results of these experiments demonstrate that compositional variance decays exponentially with time. With this calibration the CVD rate (CVD-R) becomes a new geochronometer for the time lapse from initiation of mixing to eruption. The resultant novel technique is fully independent of the typically unknown advective history of mixing - a notorious uncertainty which plagues the application of many diffusional analyses of magmatic history. Using the calibrated CVD-R technique we have obtained mingling-to-eruption times for three explosive volcanic eruptions from Campi Flegrei (Italy) in the range of tens of minutes. These in turn imply ascent velocities of 5-8 meters per second. We anticipate the routine application of the CVD-R geochronometer to the eruptive products of active volcanoes in future in order to constrain typical "mixing to eruption" time lapses such that monitoring activities can be targeted at relevant timescales and signals during volcanic unrest

    Exponential Decay Of Concentration Variance During Magma Mixing: Robustness Of A Volcanic Chronometer And Implications For The Homogenization Of Chemical Heterogeneities In Magmatic Systems

    Full text link
    The mixing of magmas is a fundamental process in the Earth system causing extreme compositional variations in igneous rocks. This process can develop with different intensities both in space and time, making the interpretation of compositional patterns in igneous rocks a petrological challenge. As a time-dependent process, magma mixing has been suggested to preserve information about the time elapsed between the injection of a new magma into sub-volcanic magma chambers and eruptions. This allowed the use of magma mixing as an additional volcanological tool to infer the mixing-to-eruption timescales. In spite of the potential of magma mixing processes to provide information about the timing of volcanic eruptions its statistical robustness is not yet established. This represents a prerequisite to apply reliably this conceptual model. Here, new chaotic magma mixing experiments were performed at different times using natural melts. The degree of reproducibility of experimental results was tested repeating one experiment at the same starting conditions and comparing the compositional variability. We further tested the robustness of the statistical analysis by randomly removing from the analysed dataset a progressively increasing number of samples. Results highlight the robustness of the method to derive empirical relationships linking the efficiency of chemical exchanges and mixing time. These empirical relationships remain valid by removing up to 80% of the analytical determinations. Experimental results were applied to constrain the homogenization time of chemical heterogeneities in natural magmatic system during mixing. The calculations show that, when the mixing dynamics generate millimetre thick filaments, homogenization timescales of the order of a few minutes are to be expected

    Diffusive exchange of trace elements between alkaline melts: implications for element fractionation and timescale estimations during magma mixing

    Full text link
    The diffusive exchange of 30 trace elements during the interaction of natural mafic and silicic alkaline melts was experimentally studied at conditions relevant to shallow magmatic systems. In detail, a set of 12 diffusion couple experiments have been performed between natural shoshonitic and rhyolitic melts from the Vulcano Island (Aeolian archipelago, Italy) at a temperature of 1200 {\deg}C, pressures from 50 to 500 MPa, and water contents ranging from nominally dry to ca. 2 wt. %. Concentration-distance profiles, measured by Laser Ablation ICP-MS, highlight different behaviours, and trace elements were divided into two groups: (1) elements with normal diffusion profiles (13 elements, mainly low field strength and transition elements), and (2) elements showing uphill diffusion (17 elements including Y, Zr, Nb, Pb and rare earth elements, except Eu). For the elements showing normal diffusion profiles, chemical diffusion coefficients were estimated using a concentration-dependent evaluation method, and values are given at four intermediate compositions (SiO2 equal to 58, 62, 66 and 70 wt. %, respectively). A general coupling of diffusion coefficients to silica diffusivity is observed, and variations in systematics are observed between mafic and silicic compositions. Results show that water plays a decisive role on diffusive rates in the studied conditions, producing an enhancement between 0.4 and 0.7 log units per 1 wt.% of added H2O. Particularly notable is the behaviour of the trivalent-only REEs (La to Nd and Gd to Lu), with strong uphill diffusion minima, diminishing from light to heavy REEs. Modelling of REE profiles by a modified effective binary diffusion model indicates that activity gradients induced by the SiO2 concentration contrast are responsible for their development, inducing a transient partitioning of REEs towards the shoshonitic melt.Comment: 57 pages, 12 figures, 5 table

    AMFORM, a new mass-based model for the calculation of the unit formula of amphiboles from electron microprobe analyses

    Get PDF
    In this work, we have studied the relationships between mass concentration and unit formula of amphibole using 114 carefully selected high-quality experimental data, obtained by electron microprobe (EMP) + single-crystal X‑ray structure refinement (SREF) ± secondary-ion mass spectrometry (SIMS) analyses, of natural and synthetic Li-free monoclinic species belonging to the Ca and Na-Ca subgroups, and 75 Li-free and Mn-free C2/m end-members including oxo analogs of Ca amphiboles. Theoretical considerations and crystal-chemical driven regression analysis allowed us to obtain several equations that can be used to: (1) calculate from EMP analyses amphibole unit-formulas consistent with SREF±SIMS data, (2) discard unreliable EMP analyses, and (3) estimate WO2– and Fe3+ contents in Li-free C2/m amphiboles with relatively low Cl contents (≤1 wt%). The AMFORM approach mostly relies on the fact that while the cation mass in Cl-poor amphiboles increases with the content of heavy elements, its anion mass maintains a nearly constant value, i.e., 22O + 2(OH,F,O), resulting in a very well-defined polynomial correlation between the molecular mass and the cation mass per gram (R2 = 0.998). The precision of estimating the amphibole formula [e.g., TSi ± 0.02, CAl ± 0.02, A(Ca+Na+K) ± 0.04 apfu] is 2–4 times higher than when using methods published following the last IMA recommended scheme (2012). It is worth noting that most methods using IMA1997 recommendations (e.g., PROBE-AMPH) give errors that are about twice those of IMA2012-based methods. A linear relation between WO2– and the sum of C(Ti, Fe3+) and A(Na+K) contents, useful to estimate the iron oxidation state of highly oxidized amphiboles typical of post-magmatic processes, is also proposed. A step by step procedure (Appendix1 1) and a user-friendly spreadsheet (AMFORM.xlsx, provided as supplementary material1) allowing one to calculate amphibole unit-formulas from EMP analyses are presented. This work opens new perspectives on the unit-formula calculation of other minerals containing OH and structural vacancies (e.g., micas)
    • …
    corecore