93 research outputs found

    A Plane Wave Virtual Element Method for the Helmholtz Problem

    Get PDF
    We introduce and analyze a virtual element method (VEM) for the Helmholtz problem with approximating spaces made of products of low order VEM functions and plane waves. We restrict ourselves to the 2D Helmholtz equation with impedance boundary conditions on the whole domain boundary. The main ingredients of the plane wave VEM scheme are: i) a low frequency space made of VEM functions, whose basis functions are not explicitly computed in the element interiors; ii) a proper local projection operator onto the high-frequency space, made of plane waves; iii) an approximate stabilization term. A convergence result for the h-version of the method is proved, and numerical results testing its performance on general polygonal meshes are presented

    A survey of Trefftz methods for the Helmholtz equation

    Get PDF
    Trefftz methods are finite element-type schemes whose test and trial functions are (locally) solutions of the targeted differential equation. They are particularly popular for time-harmonic wave problems, as their trial spaces contain oscillating basis functions and may achieve better approximation properties than classical piecewise-polynomial spaces. We review the construction and properties of several Trefftz variational formulations developed for the Helmholtz equation, including least squares, discontinuous Galerkin, ultra weak variational formulation, variational theory of complex rays and wave based methods. The most common discrete Trefftz spaces used for this equation employ generalised harmonic polynomials (circular and spherical waves), plane and evanescent waves, fundamental solutions and multipoles as basis functions; we describe theoretical and computational aspects of these spaces, focusing in particular on their approximation properties. One of the most promising, but not yet well developed, features of Trefftz methods is the use of adaptivity in the choice of the propagation directions for the basis functions. The main difficulties encountered in the implementation are the assembly and the ill-conditioning of linear systems, we briefly survey some strategies that have been proposed to cope with these problems.Comment: 41 pages, 2 figures, to appear as a chapter in Springer Lecture Notes in Computational Science and Engineering. Differences from v1: added a few sentences in Sections 2.1, 2.2.2 and 2.3.1; inserted small correction

    Trefftz discontinuous Galerkin methods for acoustic scattering on locally refined meshes

    Get PDF
    We extend the a priori error analysis of Trefftz-discontinuous Galerkin methods for time-harmonic wave propagation problems developed in previous papers to acoustic scattering problems and locally refined meshes. To this aim, we prove refined regularity and stability results with explicit dependence of the stability constant on the wave number for non convex domains with non connected boundaries. Moreover, we devise a new choice of numerical flux parameters for which we can prove L2-error estimates in the case of locally refined meshes near the scatterer. This is the setting needed to develop a complete hp-convergence analysis

    An entropy structure preserving space-time Galerkin method for cross-diffusion systems

    Full text link
    Cross-diffusion systems are systems of nonlinear parabolic partial differential equations that are used to describe dynamical processes in several application, including chemical concentrations and cell biology. We present a space-time approach to the proof of existence of bounded weak solutions of cross-diffusion systems, making use of the system entropy to examine long-term behavior and to show that the solution is nonnegative, even when a maximum principle is not available. This approach naturally gives rise to a novel space-time Galerkin method for the numerical approximation of cross-diffusion systems that conserves their entropy structure. We prove existence and convergence of the discrete solutions, and present numerical results for the porous medium, the Fisher-KPP, and the Maxwell-Stefan problem.Comment: 33 page

    Error analysis of Trefftz-discontinuous Galerkin methods for the time-harmonic Maxwell equations

    Get PDF
    In this paper, we extend to the time-harmonic Maxwell equations the p-version analysis technique developed in [R. Hiptmair, A. Moiola and I. Perugia, Plane wave discontinuous Galerkin methods for the 2D Helmholtz equation: analysis of the p-version, SIAM J. Numer. Anal., 49 (2011), 264-284] for Trefftz-discontinuous Galerkin approximations of the Helmholtz problem. While error estimates in a mesh-skeleton norm are derived parallel to the Helmholtz case, the derivation of estimates in a mesh-independent norm requires new twists in the duality argument. The particular case where the local Trefftz approximation spaces are built of vector-valued plane wave functions is considered, and convergence rates are derived

    Design and performance of a space-time virtual element method for the heat equation on prismatic meshes

    Full text link
    We present a space-time virtual element method for the discretization of the heat equation, which is defined on general prismatic meshes and variable degrees of accuracy. Strategies to handle efficiently the space-time mesh structure are discussed. We perform convergence tests for the hh- and hphp-versions of the method in case of smooth and singular solutions, and test space-time adaptive mesh refinements driven by a residual-type error indicator
    • …
    corecore