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Abstract. In this paper, we extend to the time-harmonic Maxwell equations
the p–version analysis technique developed in [R. Hiptmair, A. Moiola and

I. Perugia, Plane wave discontinuous Galerkin methods for the 2D Helmholtz

equation: analysis of the p-version, SIAM J. Numer. Anal., 49 (2011), 264-284]
for Trefftz-discontinuous Galerkin approximations of the Helmholtz problem.

While error estimates in a mesh-skeleton norm are derived parallel to the

Helmholtz case, the derivation of estimates in a mesh-independent norm re-
quires new twists in the duality argument. The particular case where the local

Trefftz approximation spaces are built of vector-valued plane wave functions

is considered, and convergence rates are derived.

1. Introduction

Non-polynomial finite element methods for time-harmonic wave problems have
been designed in the last years in order to reduce the computational cost, with
respect to more classical polynomial-based methods. Examples of such methods
are the partition of unity finite element method of Babuška and Melenk [7], the
discontinuous enrichment method [4, 46], the variational theory of complex rays
(VTCR) [44], and the ultra weak variational formulation (UWVF) by Cessenat
and Després [18]. All these methods are of Trefftz type, namely, they are based
on approximation spaces made of functions which are (locally) solutions to the
considered PDE. We concentrate, in particular, on the UWVF, which has recently
seen rapid algorithmic development and extensions; see [15, 23, 24, 29, 34–36], and
we would like to analyze its application to the time-harmonic Maxwell equations,
considering general Trefftz approximation spaces.

Since the UWVF can be regarded as a discontinuous Galerkin (DG) method
with Trefftz basis functions (see [15, 22, 24]), we briefly review some literature on
standard (i.e., polynomial-based) DG methods for the time-harmonic Maxwell equa-
tions. Some of them are based on the primal curl-curl formulation of the problem,
neglecting the divergence-free condition. For consistent DG-discretizations, these
methods are spurious-free (see [16, Sec. 6], [21, 27, 31, 48]). Other DG methods
are based on “regularized” primal curl-curl formulations, with penalization of the
divergence-free constraint. With constant weights in the penalty term, the di-
vergence is controlled but these methods are haunted by so-called spurious solu-
tions in case of strongly singular problems, see [33, 42]. This is avoided by using
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weighted regularized formulations, with penalty weights depending on the distance
from singularities, see [10, 11] and their references. Alternative approaches to con-
trol the divergence of the numerical solutions are based on mixed-DG formulations,
see [32,43].

In this paper, we consider a Trefftz-DG approximation to the homogeneous time-
harmonic Maxwell equations with impedance boundary conditions. For previous
work on the UWVF for Maxwell, we refer to [8,17,19,34]; for different Trefftz-based
approaches, we mention [20, 47]. Taking cue from the UWVF and following [34],
we study a class of Trefftz methods that rely on a DG formulation of the electric
field-based Maxwell problem, where the divergence-free constraint is not imposed;
the discrete solutions will be elementwise divergence-free, but not globally. Our
analysis applies to all these methods, independently of the choice of the particular
Trefftz approximation space.

Our focus here is on the theoretical analysis of the p–version of the methods,
which is immune to the pollution effect, an advantage also shared by spectral poly-
nomial approximations, see [1–3]). The analysis framework presented in this paper
is borrowed from [29]. The first step consists in identifying a mesh skeleton norm
on the Trefftz function space for which the bilinear form defining the method is
coercive. This allows us to prove well-posedness and error estimates in this norm.

In order to derive error estimates in a mesh-independent norm, we use a duality
argument introduced in [41] and used in [15,29] for the Helmholtz problem. In order
to extend this argument to the Maxwell equations, stability and regularity results
for the Maxwell equations with impedance boundary conditions and divergence-free
right-hand sides, with explicit dependence of the bounding constants on the problem
frequency, are necessary. These results have been proved in [28]. In addition to
that, an essential modification in the duality argument of [41] is required. The
outcome is an estimate in a norm which is slightly weaker than L2. As already
mentioned, this analysis framework applies to any Trefftz approximation space. As
an example, we consider particular plane wave spaces, for which we prove explicit
p–convergence rates.

The outline of this paper is the following. In Section 2, we introduce the model
problem, together with its variational formulation, and recall theoretical results on
well-posedness, stability and regularity. The family of Trefftz-DG methods we are
considering is described in Section 3. Section 4 is devoted to the a-priori error anal-
ysis (well-posedness of the discrete formulation, error estimates in a mesh-skeleton
norm and in a mesh independent norm). Then, in Section 5, we consider the
Trefftz-DG method based on particular plane wave spaces; we prove approxima-
tion properties of these spaces and derive convergence rates for the corresponding
methods.

We end this introduction with some notation used throughout this paper. If
D is a domain in R2 or R3, we denote by Hk(D)d, d = 1, 2, 3, the Hilbert space
with integer or fractional regularity index k and valued in Cd, and by ‖·‖k,Ω the
corresponding Sobolev norm; we use Hk(D) = Hk(D)1, denote by H1

0 (D) the
closure in H1(D) of C∞0 (D) and set L2(D) = H0(D).
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For D ⊂ R3, with exterior unit normal vector to ∂D denoted by n, we also
introduce the following spaces:

Hr(curl;D) = {v ∈ Hr(D)3 : ∇× v ∈ Hr(D)3} ,
H(curl;D) = H0(curl;D) ,

H0(curl;D) = {v ∈ H(curl;D) : n× v = 0 on ∂D} ,
H(div;D) = {v ∈ L2(D)3 : ∇ · v ∈ L2(D)} ,

H(div0;D) = {v ∈ L2(D)3 : ∇ · v = 0 in D} ,
L2
T (∂Ω) = {v ∈ L2(∂Ω)3 : v · n = 0} .

If D is a Lipschitz domain in R3, the following integration by parts formula holds
true for functions F ,G ∈ H(curl;D):∫

D

∇× F ·G dV =
∫
D

F · ∇ ×GdV +
∫
∂D

n× F ·G dS ,

provided that the second integral on the right-hand side is read as a duality product
between the appropriate trace spaces (see [13]). If F is a vector-valued function
defined in D, we denote its normal and tangential components on ∂D by FN :=
(F · n)n and F T := (n × F ) × n, respectively. Finally, we write Bγ(x0) for the
(open) ball of radius γ and centered at x0.

2. The Maxwell boundary value problem

Let Ω ⊂ R3 be a bounded, polyhedral domain, such that
there exist a point x0 ∈ Ω and a real number γ > 0 for which Ω is
star-shaped with respect to all points in Bγ(x0).

Notice that this implies that Ω satisfies the uniform cone condition and thus, by [25,
Theorems 1.2.2.2], Ω is Lipschitz. We denote by n the unit normal vector field on
∂Ω pointing outside Ω.

We consider the following formulation of the (homogeneous) time-harmonic Max-
well equations in terms of electric field E and magnetic field H with impedance
boundary conditions in the domain Ω:

(2.1)


−iωε E −∇×H = 0 in Ω ,

−iωµH +∇×E = 0 in Ω ,

H × n− ϑ(n×E)× n = g/iω on ∂Ω ,

where ω > 0 is a fixed wave number, and g ∈ L2
T (∂Ω). The material coefficients

ε, µ, ϑ ∈ R, ε, µ > 0 and ϑ 6= 0, are assumed to be constant in the whole domain.
By the second equation of (2.1), we can write H in terms of E as H =

(iω)−1µ−1∇ × E; replacing this expression into the first equation and into the
boundary condition, we obtain

(2.2)

{
∇× (µ−1∇×E)− ω2ε E = 0 in Ω ,

(µ−1∇×E)× n− iωϑ(n×E)× n = g on ∂Ω .

Introducing the following subspace of H(curl; Ω):

Himp(curl; Ω) = {v ∈ H(curl; Ω) : vT ∈ L2
T (∂Ω)} ,
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endowed with the graph norm, the variational formulation of problem (2.2) reads
as follows: find E ∈ Himp(curl; Ω) such that, for all ξ ∈ Himp(curl; Ω), it holds

(2.3) A(E, ξ) =
∫
∂Ω

g · ξT dS ,

where

A(E, ξ) :=
∫

Ω

[
(µ−1∇×E) · (∇× ξ)− ω2(εE) · ξ

]
dV − iω

∫
∂Ω

ϑET · ξT dS .

Under the assumptions made on Ω, g and on the material coefficients, there exists
a unique E ∈ Himp(curl; Ω) with ∇·(εE) = 0 solution to (2.3) (see [40, Thm. 4.17]).
Moreover, there exists a positive constant Cstab independent of ω but depending on
d := diam(Ω), γ, ϑ, ε and µ, such that, if E is the solution to (2.3),∥∥∥µ−1/2∇×E

∥∥∥
0,Ω

+ ω
∥∥∥ε1/2E

∥∥∥
0,Ω
≤ Cstab ‖g‖0,∂Ω

(see [28, Thm. 3.2]).
In order to develop the duality argument needed for the error analysis of Sec-

tion 4.3 below, we will make use of an elliptic regularity result for the adjoint
Maxwell problem:

(2.4)

{
∇× (µ−1∇×Φ)− ω2ε Φ = w0 in Ω ,

(µ−1∇×Φ)× n+ iωϑ(n×Φ)× n = 0 on ∂Ω ,

with w0 ∈ H(div0; Ω). The variational formulation of problem (2.4) is: find Φ ∈
Himp(curl; Ω) such that, for all ξ ∈ Himp(curl; Ω), it holds∫

Ω

[
(µ−1∇×Φ) · (∇× ξ)− ω2(εΦ) · ξ

]
dV + iω

∫
∂Ω

ϑΦT · ξT dS

=
∫

Ω

w0 · ξ dV .

(2.5)

Theorem 2.1. [28, Thm. 3.2, Thm. 4.4 and Rem. 4.5] Under the previous as-
sumptions on Ω and on the material coefficients, for all w0 ∈ H(div0; Ω), the
solution Φ to problem (2.5) satisfies

Φ ∈ H1/2+s(curl; Ω)

for all the real parameters s > 0 such that s ≤ s̃, where 0 < s̃ < 1/2 is a parameter
only depending on Ω.

Moreover, there are positive constants C1 and C2 independent of ω, but depending
on s, Ω, ϑ, ε and µ, such that

‖∇ ×Φ‖0,Ω + ω ‖Φ‖0,Ω ≤ C1 ‖w0‖0,Ω ,

‖∇ ×Φ‖1/2+s,Ω + ω ‖Φ‖1/2+s,Ω ≤ C2(1 + ω) ‖w0‖0,Ω .

If Ω is convex, this holds true for all 0 < s < 1/2.

Remark 2.2. To be more precise, let sΩ be the Dirichlet/Laplace regularity param-
eter defined in [5, Prop. 3.7] (0 < sΩ < 1/2), and let s∗ be the Laplace-Beltrami
regularity parameter defined in [14, Thm. 8] (0 < s∗ ≤ 1); then, Theorem 2.1 holds
true for all real parameters s such that

s ≤ sΩ and s < s∗ .
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3. The Trefftz-DG method

Let Th be a finite element partition of Ω, with possible hanging nodes, of mesh
width h (i.e, h = maxK∈Th

hK , with hK := diam(K)) on which we will define our
Trefftz-DG method; we will denote by Fh =

⋃
K∈Th

∂K the skeleton of the mesh,
and set FBh = Fh ∩ ∂Ω and FIh = Fh \ FBh .

We recall some standard DG notation. Write n+, n− for the exterior unit
normals on ∂K+ and ∂K−, respectively. Let u and σ be a piecewise smooth
function and vector field on Th, respectively. On ∂K− ∩ ∂K+, we define

the averages: {{u}} := 1
2 (u+ + u−) , {{σ}} := 1

2 (σ+ + σ−) ,

the jumps: [[σ]]T := n+ × σ+ + n− × σ− .

Finally, we recall the “DG magic formula”∑
K∈Th

∫
∂K

nK × F ·GdS =
∫
FI

h

(
[[F ]]T · {{G}} − {{F }} · [[G]]T

)
dS

+
∫
FB

h

n× F ·G dS ;
(3.1)

thus, if F̂ is a single-valued function on each edge of Th, we have∑
K∈Th

∫
∂K

nK ×F̂ ·GdS = −
∫
FI

h

F̂ · [[G]]T dS +
∫
FB

h

n×F̂ ·G dS .

We proceed by deriving our Trefftz-DG method. Set

V (K) = {v ∈ H(curl,K), n× v ∈ L2
T (∂K)}

Integrating by parts equation (2.1), for every K ∈ Th we look for (E,H) ∈ V (K)×
V (K) such that

iω

∫
K

ε E · ξ dV +
∫
K

H · ∇ × ξ dV +
∫
∂K

n×H · ξ dS = 0

iω

∫
K

H ·ψ dV −
∫
K

E · ∇ × (µ−1ψ) dV −
∫
∂K

n×E · (µ−1ψ) dS = 0

for every (ξ,ψ) ∈ V (K)× V (K).
Now we discretize the problem: for every K ∈ Th we look for (Eh,p,Hh,p) ∈

V E
p (K)× V H

p (K) such that

iω

∫
K

ε Eh,p · ξh,p dV +
∫
K

Hh,p · ∇ × ξh,p dV +
∫
∂K

n×Ĥh,p · ξh,p dS = 0

(3.2)

iω

∫
K

Hh,p ·ψh,p dV −
∫
K

Eh,p · ∇ × (µ−1ψh,p) dV

−
∫
∂K

n×Êh,p · (µ−1ψh,p) dS = 0

for every (ξh,p,ψh,p) ∈ V
E
p (K) × V H

p (K), where V E
p (K),V H

p (K) ⊂ V (K) are
finite dimensional spaces, and Ĥh,p and Êh,p on Fh are the numerical fluxes to be
defined. The particular case of Trefftz-DG method which makes use of plane wave
basis functions (see [34]) will be discussed in Section 5 below.
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Assuming that ∇ × V E
p (K) ⊆ V H

p (K), we can choose ψh,p = ∇ × ξh,p in the
second equation of (3.2) and obtain

iω

∫
K

Hh,p · ∇ × ξh,p dV

=
∫
K

Eh,p · ∇ × (µ−1∇× ξh,p) dV +
∫
∂K

n×Êh,p · (µ−1∇× ξh,p) dS .

Substituting this expression for
∫
K
Hh,p·∇ × ξh,p dV into the first equation of (3.2)

and multiplying by iω give a problem in the Eh,p variable only: find Eh,p ∈ V E
p (K)

such that∫
K

Eh,p ·
(
∇× (µ−1∇× ξh,p)− ω2ε ξh,p

)
dV

+
∫
∂K

n×Êh,p ·
(
µ−1∇× ξh,p

)
dS + iω

∫
∂K

n×Ĥh,p · ξh,p dS = 0

for every ξh,p ∈ V
E
p (K).

The key idea of Trefftz methods is to choose V E
p (K) which satisfies the Trefftz

property
∇× (µ−1∇× ξh,p)− ω2ε ξh,p = 0 ∀ ξh,p ∈ V

E
p (K) .

Using the Trefftz property of the test functions, the elemental equation defining
the Trefftz-DG method is

(3.3)
∫
∂K

n×Êh,p ·
(
µ−1∇× ξh,p

)
dS + iω

∫
∂K

n×Ĥh,p · ξh,p dS = 0 ,

with numerical fluxes to be defined.
Motivated by the classical UWVF [18], and in analogy to the Helmholtz case

(see [15,29]), we define the numerical fluxes as functions on FIh :

Êh,p = {{Eh,p}} −
β

iω
[[µ−1∇h ×Eh,p]]T ,

Ĥh,p =
1
iω
{{µ−1∇h ×Eh,p}}+ α [[Eh,p]]T ,

and on FBh :

Êh,p = Eh,p − δϑ−1

(
1
iω
n× (µ−1∇h ×Eh,p) + ϑ(n×Eh,p)× n+

1
iω
g

)
,

Ĥh,p =
1
iωµ
∇h ×Eh,p − (1− δ)

(
1
iωµ
∇h ×Eh,p − ϑ(n×Eh,p)−

1
iω
n× g

)
,

where ∇h × · denotes the elementwise application of the ∇× · operator, α, β, δ are
real, strictly positive, bounded functions, bounded away from zero, independent of
h, p and ω, with 0 < δ ≤ 1/2.

Remark 3.1. This choice of fluxes with the parameters α, β and δ independent of the
mesh size, in analogy to [15,29], is due to the fact that our focus is on the p–version
of the method. With a mesh-dependent choice of the flux parameters like the one
made in [24] for the Helmholtz problem, one could use the same analysis technique
as in [24] and possibly derive better h–version estimates also in the Maxwell case
(see also Remark 4.11 below).
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Other numerical fluxes could also be defined by adapting to the time-harmonic
Maxwell problem the DG-elliptic fluxes listed in [6] (for an example of “mixed
fluxes” in the case of the Helmholtz problem, see [30]).

The above defined fluxes are single-valued on the mesh skeleton; moreover, they
are consistent, i.e., replacing Eh,p and Hh,p by E and H, the analytical solutions
to (2.1), respectively, we have that Ê coincides with E and Ĥ coincides with H.

Defining

V p(Th) = {ξh,p ∈ L2(Ω)3 : ξh,p|K ∈ V
E
p (K) ∀ K ∈ Th} ,

inserting the numerical fluxes into (3.3) and adding over all elements complete
the definition of the Trefftz-DG method: find Eh,p ∈ V p(Th) such that, for all
ξh,p ∈ V p(Th),

(3.4) Ah(Eh,p, ξh,p) = `h(ξh,p) ,

where

Ah(E, ξ) = −
∫
FI

h

{{E}} · [[µ−1∇h × ξ]]T dS −
∫
FI

h

{{µ−1∇h ×E}} · [[ξ]]T dS

+
∫
FB

h

(n×E) · (µ−1∇h × ξ) dS

−
∫
FB

h

δ(n×E) · (µ−1∇h × ξ) dS −
∫
FB

h

δ(µ−1∇h ×E) · (n× ξ) dS

− iω−1

∫
FI

h

β [[µ−1∇h ×E]]T · [[µ−1∇h × ξ]]T dS − iω
∫
FI

h

α [[E]]T · [[ξ]]T dS

− iω−1

∫
FB

h

δϑ−1[n× (µ−1∇h ×E)] · [n× (µ−1∇h × ξ)] dS

− iω
∫
FB

h

(1− δ)ϑ(n×E) · (n× ξ) dS ,

(3.5)

and

`h(ξ) =
1
iω

∫
FB

h

δϑ−1(n× g) · (µ−1∇h × ξ) dS +
∫
FB

h

(1− δ)(n× g) · (n× ξ) dS .

The consistency of the Trefftz-DG method is a consequence of the consistency of
the numerical fluxes, thus, if E is the analytical solution of (2.2), then

Ah(E, ξh,p) = `h(ξh,p) ∀ ξh,p ∈ V p(Th) .

Remark 3.2. The formulation of the Trefftz-DG method introduced in this section
would remain unchanged if the material coefficients were piecewise constant on Th.
The assumption on these coefficients to be constant in the whole domain is only
required in our error analysis.

4. Theoretical analysis

In this section, we closely follow the analysis developed in [29] for the Helmholtz
problem. Well-posedness and error estimates in a mesh-skeleton norm are derived
exactly as in [29] (see Sections 4.1 and 4.2 below). For the derivation of error
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estimates in a mesh-independent norm, we modify the duality argument developed
in [41] and used in [29] (see Section 4.3 below).

Define the broken Sobolev space:

Hr(curl; Th) = {w ∈ L2(Ω)3 : w|K ∈ H
r(curl;K) ∀ K ∈ Th} .

Let T (Th) be the piecewise Trefftz space defined on Th by

T (Th) = {w ∈ L2(Ω)3 : ∃s > 0 s.t. w ∈ H1/2+s(curl; Th),

and ∇× (µ−1∇×w)− ω2ε w = 0 in each K ∈ Th} .

Notice that, since T (Th) ⊂ H1/2+s(curl; Th), s > 0, if w ∈ T (Th), then both n×w
and n× (∇h ×w) belong to L2(Fh)2.

We endow T (Th) with the mesh-skeleton norm

|||w|||2Fh
=ω−1

∥∥∥β1/2[[µ−1∇h ×w]]T
∥∥∥2

0,FI
h

+ ω
∥∥∥α1/2[[w]]T

∥∥∥2

0,FI
h

+ ω−1
∥∥∥δ1/2ϑ−1/2n× (µ−1∇h ×w)

∥∥∥2

0,FB
h

+ ω
∥∥∥(1− δ)1/2ϑ1/2(n×w)

∥∥∥2

0,FB
h

.

If w ∈ T (Th) and |||w|||Fh
= 0, then it satisfies w ∈ H0(curl; Ω), µ−1∇ ×w ∈

H0(curl; Ω), and ∇× (µ−1∇×w) − ω2ε w = 0, thus w = 0, as a consequence of
well-posedness of problem (2.2). This proves that ||| · |||Fh

is actually a norm on
T (Th).

4.1. Well-posedness. We prove existence, uniqueness and continuous dependence
on the data of solutions to Trefftz-DG methods.

Proposition 4.1. There exists a unique Eh,p solution to (3.4); moreover, we have
continuous dependence of Eh,p on g:

|||Eh,p|||Fh
≤
∥∥∥(1− δ)1/2ϑ−1/2(n× g)

∥∥∥
0,FB

h

.

Proof. We rewrite the bilinear form Ah(E, ξ) defined in (3.5), for all E, ξ ∈ T (Th)
as follows: by the Trefftz property of ξ, using the “DG magic formula” (3.1), for
all E, ξ ∈ T (Th), we have

0 =
∑
K∈Th

∫
K

E ·
(
∇× (µ−1∇× ξ)− ω2ε ξ

)
dV

=
∑
K∈Th

∫
K

(
µ−1∇×E · ∇ × ξ − ω2ε E · ξ

)
dV

−
∫
FI

h

[[E]]T · {{µ−1∇h × ξ}} dS +
∫
FI

h

{{E}} · [[µ−1∇h × ξ]]T dS

−
∫
FB

h

(n×E) · (µ−1∇h × ξ) dS ;
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adding this expression of 0 to Ah(E, ξ) gives

Ah(E, ξ) =
∑
K∈Th

∫
K

(
µ−1∇×E · ∇ × ξ − ω2ε E · ξ

)
dV

−
∫
FI

h

[[E]]T · {{µ−1∇h × ξ}} dS −
∫
FI

h

{{µ−1∇h ×E}} · [[ξ]]T dS

−
∫
FB

h

δ(n×E) · (µ−1∇h × ξ) dS −
∫
FB

h

δ(µ−1∇h ×E) · (n× ξ) dS

− iω−1

∫
FI

h

β [[µ−1∇h ×E]]T · [[µ−1∇h × ξ]]T dS − iω
∫
FI

h

α [[E]]T · [[ξ]]T dS

− iω−1

∫
FB

h

δϑ−1[n× (µ−1∇h ×E)] · [n× (µ−1∇h × ξ)] dS

− iω
∫
FB

h

(1− δ)ϑ(n×E) · (n× ξ) dS ∀ E, ξ ∈ T (Th) .

It is immediate so see that

(4.1) Im [Ah(ξ, ξ)] = −|||ξ|||2Fh
∀ ξ ∈ T (Th) .

Existence and uniqueness of solutions to (3.4) readily follow.
By using the weighted Cauchy-Schwarz inequality and bounding δ by 1− δ, we

obtain the following continuity property for the functional `h(·):

(4.2) |`h(ξ)| ≤
∥∥∥(1− δ)1/2ϑ−1/2(n× g)

∥∥∥
0,FB

h

|||ξ|||Fh
∀ ξ ∈ T (Th) .

Combining (4.1) and (4.2) gives the continuous dependence of Eh,p on g. �

4.2. Error estimates in mesh-skeleton norm. By proceeding as in [24, 29],
in order to prove continuity of the bilinear form Ah(·, ·), we define the following
augmented norm on T (Th):

|||w|||2F+
h

= |||w|||2Fh
+ ω

∥∥∥β−1/2{{wT }}
∥∥∥2

0,FI
h

+ ω−1
∥∥∥α−1/2{{(µ−1∇h ×w)T }}

∥∥∥2

0,FI
h

+ ω
∥∥∥δ−1/2ϑ1/2(n×w)

∥∥∥2

0,FB
h

.

Proposition 4.2. We have

|Ah(E, ξ)| ≤ 2 |||E|||F+
h
|||ξ|||Fh

∀ E, ξ ∈ T (Th) .

Proof. The result can be readily obtained from the expression (3.5) by using the
weighted Cauchy-Schwarz inequality and bounding δ by 1− δ. �

It is immediate to derive the following abstract error estimate in the ||| · |||Fh
–

norm.

Theorem 4.3. Assume that the analytical solution E to the Maxwell problem (2.2)
belongs to T (Th).1 We have

|||E −Eh,p|||Fh
≤ 3 inf

ξh,p∈V p(Th)
|||E − ξh,p|||F+

h
.

1Whenever g|Γj
∈ Hsg (Γj) with sg > 0, j = 1, . . . , m, where Γ1, . . . , Γm are the flat faces of

∂Ω, then E ∈ H1/2+s(Ω)3 and ∇×E ∈ H1/2+s(Ω)3, for some s > 0 which depends on sg and Ω

(see [28, Th. 4.4]).
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Proof. By the triangle inequality, we can write

|||E −Eh,p|||Fh
≤ |||E − ξh,p|||Fh

+ |||ξh,p −Eh,p|||Fh
∀ ξh,p ∈ V p(Th) ;

we only need to prove that |||ξh,p −Eh,p|||Fh
≤ 3 |||E − ξh,p|||F+

h
.

Since ξh,p −Eh,p ∈ T (Th), then

|||ξh,p −Eh,p|||2Fh
= −Im [Ah(ξh,p −Eh,p, ξh,p −Eh,p)] ,

and by the Galerkin orthogonality and the continuity stated in Proposition 4.2 we
obtain

|||ξh,p −Eh,p|||2Fh
≤ 2 |||E − ξh,p|||F+

h
|||ξh,p −Eh,p|||Fh

,

which allows to conclude. �

Remark 4.4. The error bounds in Theorem 4.3 and Theorem 4.9 below are proved
under minimal regularity assumptions on the analytical solutions, namely, H

1
2 +s,

s > 0. This indicates that the considered methods are not affected by so-called spu-
rious solutions (i.e., numerical solutions which converge to non-physical solutions;
for discretizations to the Maxwell problem, this might occur in case of singularities).

On the other hand, Theorem 4.3 guarantees p–convergence of Trefftz-DG meth-
ods of the type considered in this paper only provided that the spaces V p(Th) are
such that

lim
p→+∞

inf
ξh,p∈V p(Th)

|||E − ξh,p|||F+
h

= 0 .

Thus possible restrictions on the solution smoothness to prove convergence of a
given Trefftz-DG method are not due to the analysis framework, but would only
depend on the choice of the approximation spaces.

4.3. Error estimates in a mesh-independent norm. For the Helmholtz prob-
lem, error estimates in the L2–norm were derived in [15, 29] from error estimates
in mesh skeleton norms, by bounding the L2–norms of Trefftz functions by their
mesh skeleton norms. This was carried out by using a modified duality argument
developed in [41].

The first problem in repeating that argument for the time-harmonic Maxwell
problem consists in the lack of stability estimates for the dual problem with a
generic (non divergence-free) w ∈ T (Th) on the right-hand side (see [28]). In
order to overcome this problem, we will consider the L2–orthogonal Helmholtz
decomposition of w

(4.3) w = w0 +∇p ,

with w0 ∈ H(div0; Ω) and p ∈ H1
0 (Ω) (see, e.g., [40, Theorem 3.45]), and estimate

w0 and ∇p separately.
An estimate of w0 in the L2–norm can be obtained by proceeding like in [15,29],

while the poor regularity of p, and here comes the second problem, does not allow
to obtain an L2–norm estimate of ∇p (and thus of w).

For this reason, we introduce the following weaker norm: for every u ∈ L2(Ω)3,
we define

‖u‖H(div;Ω)′ := sup
v∈H(div;Ω)

∫
Ω
u · v dV

‖v‖H(div;Ω)

,

where ‖v‖2H(div;Ω) = ‖v‖20,Ω + diam(Ω)2 ‖∇ · v‖20,Ω. Notice that, for every u ∈
H(div0; Ω), ‖u‖H(div;Ω)′ = ‖u‖0,Ω.
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In the following, we bound the L2–norm of w0 and the H(div; Ω)′–norm of ∇p
by the ||| · |||Fh

–norm of w (see Propositions 4.5 and 4.7 below). Then, error
estimates of the Trefftz-DG methods presented in this paper in the H(div; Ω)′–
norm will follow from error estimates in the ||| · |||Fh

–norm. These final estimates
are reported in Theorem 4.9 below.

We define two mesh parameters which will enter the constants in the error esti-
mates: the shape regularity measure

s.r.(Th) := max
K∈Th

hK
dK

,

where dK is the diameter of the largest ball contained inK, and the quasi-uniformity
measure

q.u.(Th) := max
K∈Th

h

hK
.

As mentioned before, we bound ‖w0‖0,Ω by a modified duality argument.

Proposition 4.5. Let w ∈ T (Th) and let w0 ∈ H(div0; Ω) be its first component
in decomposition (4.3). Then, there exists a positive constant C independent of w,
h, p and ω such that

‖w0‖0,Ω ≤ C
[
ω−1/2h−1/2 + ω−1/2hs + ω1/2hs

]
|||w|||Fh

for all real parameters s > 0 satisfying the upper bound in Theorem 2.1. The
constant C depends on Ω, s, s.r.(Th), q.u.(Th), ϑ, µ, and on the flux parameters.

Proof. Consider the adjoint problem (2.4), and let Φ be its solution (with source
term w0). Since, due to the L2–orthogonality of decomposition (4.3),

‖w0‖20,Ω =
∫

Ω

w0 ·w dV ,

by multiplying the first equation of problem (2.4) by w, integrating by parts twice
and taking into account that w is a Trefftz’ function, we have∫

Ω

w0 ·w dV =
∑
K∈Th

∫
∂K

n×Φ · (µ−1∇×w) dS

+
∑
K∈Th

∫
∂K

n× (µ−1∇×Φ) ·w dS

=−
∫
FI

h

(
Φ · [[µ−1∇h ×w]]T + (µ−1∇×Φ) · [[w]]T

)
dS

+
∫
FB

h

(
n×Φ · (µ−1∇h ×w) + n× (µ−1∇×Φ) ·w

)
dS .

The boundary condition in the second equation of (2.4) implies that

n× (µ−1∇×Φ) ·w = iωϑ(n×Φ) · (n×w) ;
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using this and the weighted Cauchy-Schwarz inequality, together with (1−δ)−1/2 ≤
δ−1/2, and the definition of the ||| · |||Fh

–norm, we get

|
∫

Ω

w0 ·w dV | ≤

∑
f∈FI

h

(
ω
∥∥∥β−1/2n×Φ

∥∥∥2

0,f
+ ω−1

∥∥∥α−1/2n× (µ−1∇×Φ)
∥∥∥2

0,f

)

+
∑
f∈FB

h

ω
∥∥∥δ−1/2ϑ1/2n×Φ

∥∥∥2

0,f

1/2

|||w|||Fh

=:G(Φ)1/2|||w|||Fh
.

Defining ζ on Fh by ζ = β if f ∈ FIh and ζ = δϑ−1 if f ∈ FBh , we can write

G(Φ) ≤
∑
K∈Th

(
ω
∥∥∥ζ−1/2n×Φ

∥∥∥2

0,∂K
+ ω−1

∥∥∥α−1/2n× (µ−1∇×Φ)
∥∥∥2

0,∂K

)
.

For any K ∈ Th, the trace inequality

(4.4) ‖u‖20,∂K ≤ C
(
h−1
K ‖u‖

2
0,K + h2η

K |u|
2
1/2+η,K

)
∀ u ∈ H1/2+η(K)

holds provided that η > 0, with C > 0 only depending on the shape of K and
on η (see [37, Th. A.2]). Since, from Theorem 2.1, Φ belongs to H1/2+s(curl; Ω)
for all s > 0 satisfying the upper bound in Theorem 2.1, using the previous trace
inequality and taking into account that the material coefficients are constant, we
get

G(Φ) ≤ C
[
ωh−1 ‖Φ‖20,Ω + ωh2s ‖Φ‖21/2+s,Ω

+ω−1h−1 ‖∇ ×Φ‖20,Ω + ω−1h2s ‖∇ ×Φ‖21/2+s,Ω

]
,

with the constant C > 0 independent of h, p and ω, but depending on s, µ, s.r.(Th),
q.u.(Th), and on the flux parameters. Using the stability estimates in Theorem 2.1,
we obtain

G(Φ) ≤ C
[
ω−1h−1 + ω−1h2s + ωh2s

]
‖w0‖20,Ω ,

which gives the result. �

Before deriving an estimate for the component ∇p of decomposition (4.3), we
recall the following regularity result (see [26]).

Lemma 4.6. [26, Cor. 2.6.7, Cor. 2.6.8] Under our assumptions on Ω, there
exists η∗, 0 < η∗ ≤ 1/2, only depending on Ω such that, for all q ∈ H1

0 (Ω) satisfying
∆q ∈ L2(Ω), we have that q belongs to H3/2+η(Ω) for all η < η∗ and

|q|3/2+η,Ω ≤ C ‖∆q‖
2
0,Ω ,

with a positive constant C only depending on Ω and on η. If Ω is convex, this holds
true for all 0 < η ≤ 1/2.

Proposition 4.7. Let w ∈ T (Th) and let p ∈ H1
0 (Ω) be the second component of

its decomposition (4.3). Then, there exists a positive constant C independent of w,
h, p and ω, but depending on Ω, ε, and on the flux parameter β, such that

‖∇p‖H(div;Ω)′ ≤ C ω
−3/2(h−1/2 + hη)|||w|||Fh

for all η > 0 satisfying the upper bounds in Lemma 4.6.
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Proof. Let w ∈ T (Th) and let q ∈ H1
0 (Ω) be as in Lemma 4.6, i.e., ∆q ∈ L2(Ω); we

have

(4.5)

|
∫

Ω

w · ∇q dV | = |
∑
K∈Th

∫
K

1
ω2ε
∇h × (µ−1∇h ×w) · ∇q dV |

=
1
ω2ε
|
∑
K∈Th

∫
∂K

n× (µ−1∇h ×w) · ∇q dS|

∇q∈H(curl;Ω),

q∈H1
0 (Ω)

=
1
ω2ε
|
∫
FI

h

[[µ−1∇h ×w]]T · ∇q dS|

≤ 1

ω3/2εβ
1/2
min

|||w|||Fh
‖∇q‖0,FI

h

(4.4)

≤ C

ω3/2εβ
1/2
min

|||w|||Fh

(
h−1/2|q|1,Ω + hη|q|3/2+η,Ω

)
≤ C (h−

1
2 + hη)

ω3/2 εβ
1/2
min

|||w|||Fh
‖∆q‖0,Ω ,

with βmin := minx∈FI
h
β, and the positive constant C only depending on Ω.

Given a function v ∈ H(div; Ω), consider its L2–orthogonal Helmholtz decom-
position v = v0 +∇qv with v0 ∈ H(div0; Ω) and qv ∈ H1

0 (Ω); then, ∆qv = ∇ · v
and (∇q′,v0) = 0 for every q′ ∈ H1

0 (Ω). This allows to derive the desired bound:

‖∇p‖H(div,Ω)′ = sup
v∈H(div,Ω)

∫
Ω
∇p · v dV
‖v‖H(div,Ω)

(4.3)
= sup

v∈H(div,Ω)

∫
Ω
∇p · v0 dV +

∫
Ω

(w −w0) · ∇qv dV
‖v‖H(div,Ω)R

Ω∇q
′·v0 dV=(w0,∇q′)=0,

∀ q′∈H1
0 (Ω)

= sup
v∈H(div,Ω)

∫
Ω
w · ∇qv dV
‖v‖H(div,Ω)

(4.5)

≤ C (h−
1
2 + hη)

ω3/2 εβ
1/2
min

|||w|||Fh
sup

v∈H(div,Ω)

‖∆qv‖0,Ω
‖v‖H(div,Ω)

∆qv=∇·v
=

C (h−
1
2 + hη)

ω3/2 εβ
1/2
min

|||w|||Fh
sup

v∈H(div,Ω)

‖∇ · v‖0,Ω
‖v‖H(div,Ω)

≤ C (h−
1
2 + hη)

ω3/2 εβ
1/2
min

|||w|||Fh
.

�

We have the following result.

Proposition 4.8. Let w ∈ T (Th). Under our assumptions on Ω and on the
material coefficients, there exists a positive constant C independent of w, h, p
and ω such that

‖w‖H(div;Ω)′ ≤ C f(ω, h) |||w|||Fh
,
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with

(4.6) f(ω, h) :=
[
ω−1/2h−1/2 + ω−1/2hs + ω1/2hs + ω−3/2(h−1/2 + hη)

]
,

for all s > 0 and η > 0 satisfying the upper bounds in Theorem 2.1 and Lemma 4.6,
respectively. The constant C depends on Ω, s, η, s.r.(Th), q.u.(Th), ϑ, ε, µ, and on
the flux parameters.

Proof. By using the properties of the Helmholtz decomposition (4.3), we have

‖w‖H(div,Ω)′ ≤ ‖w0‖0,Ω + ‖∇p‖H(div,Ω)′ .

The result follows from Proposition 4.5 and Proposition 4.7. �

The main result of this section directly follows from Theorem 4.3 and Proposi-
tion 4.8.

Theorem 4.9. In addition to our assumptions on Ω, g and on the material coeffi-
cients, assume that the analytical solution E to the Maxwell problem (2.2) belongs
to T (Th). Then there exists a positive constant C independent of h, p and ω such
that

‖E −Eh,p‖H(div;Ω)′ ≤ C f(ω, h) inf
ξh,p∈V p(Th)

|||E − ξh,p|||F+
h
,

with f(ω, h) given by (4.6), for all s > 0 and η > 0 satisfying the upper bounds
in Theorem 2.1 and Lemma 4.6, respectively. The constant C depends on Ω, s, η,
s.r.(Th), q.u.(Th), ϑ, ε, µ, and on the flux parameters,

Remark 4.10. In order to apply the estimate of Theorem 4.9 in the case of locally
refined meshes, we have to dispense with the “quasi-uniformity assumption”, that
is, the dependence of the constants on q.u.(Th). In an attempt to achieve this, one
may link the coefficients α, β, and δ in the definition of the numerical fluxes Êh,p

and Ĥh,p to the local mesh size hK , hoping to offset the negative powers of hK in
the trace inequality (4.4). However, the constraint δ ≤ 1

2 thwarts this idea.

Remark 4.11. The error estimate given in Theorem 4.9 should not be considered
as an h–version error estimate. Indeed, as already mentioned in Remark 3.1, one
could adapt to the Maxwell problem the mesh size dependent numerical fluxes and
the analysis framework developed in [24] for the Helmholtz equation. In this way,
one should obtain better estimates, namely, with no negative powers of h in the
expression of f(ω, h), provided that a threshold condition is satisfied.

5. The PWDG method

We denote by Plane Wave Discontinuous Galerkin (PWDG) method the partic-
ular Trefftz-DG method which makes use of plane wave basis functions. Vector-
valued plane waves are vector field defined as x 7→ aeiω

√
εµ d·x, where a and d are

constant unit vectors. They are componentwise solutions to the Helmholtz equation
and they are solution to the Maxwell equation if and only if a · d = 0.

We define local plane wave approximation spaces in a slightly different way than
the one in [34]. Given an integer q ≥ 1, introduce a set of p = (q + 1)2 plane wave
propagation directions

{d`}1≤`≤p ,
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together with the associated set of 2p pairs of directions:

(5.1)
d2p(K) =

{
(d`,ai`)1≤`≤p

i=1,2
∈ R3 × R3, |d`| = |ai`| = 1,

(d`,a1
`)R3 = 0, a2

` = a1
` × d`

}
.

Then, we define V E
2p(K) as

V E
2p(K) =


∑

1≤`≤p
i=1,2

αi` a
i
` e

iω
√
εµ d`·x, (d`,ai`)1≤`≤p

i=1,2
∈ d2p(K), αi` ∈ C

 ,

where ai`, i = 1, 2, represent the polarization directions of the plane wave propa-
gating along d`.

Finally, we define the discrete Maxwell-Trefftz spaces V 2p(Th) ⊂ T (Th):

V 2p(Th) =
{
ξh,2p ∈ L2(Ω)3 : ξh,2p|K ∈ V

E
2p(K) ∀ K ∈ Th

}
.

In Section 5.1, we derive approximation estimates of homogeneous Maxwell so-
lutions in the vector-valued plane wave approximation spaces V 2p(Th). Then, in
Section 5.2, we will insert these estimates into Theorem 4.3 and Theorem 4.9 in
order to derive convergence rates of the PWDG method for problem (2.2).

5.1. Approximation properties of plane wave spaces. The strategy we use to
derive approximation estimates of homogeneous Maxwell solutions E in V 2p(Th) is
to approximate E as the curl of H := (iω)−1µ−1∇×E (thus, E = −(iω)−1ε−1∇×
H). We have that not onlyH is a Maxwell-Trefftz function, but its components are
Helmholtz-Trefftz functions. Thus, we can exploit the best approximation estimates
for (scalar) homogeneous Helmholtz solutions in Helmholtz-Trefftz spaces obtained
in [38] in order to approximate H in a larger space than the Maxwell-Trefftz space
V 2p(Th). On the other hand, one can find a basis for this larger space formed by
three vector functions: two of them generate V 2p(Th), while the third one generates
a space of non-Trefftz but curl-free functions; this allows us to find approximation
estimates for the curl of H, and thus for E, in V 2p(Th).

Remark 5.1. The fact that we approximate E as the curl of H leads to estimates
which are one order lower than expected. In order to derive sharper best approxima-
tion estimates, one might think of extending to the Maxwell problem the approach
of [38,39], based on Vekua’s theory. This will be the subject of future investigation.

Before stating our approximation result, we introduce some further notation and
assumptions.

Assume that

all elements in Th have Lipschitz boundaries, and there exist ρ ∈
(0, 1/2] and ρ0 ∈ (0, ρ] such that every K ∈ Th contains the ball
BρhK

(xK) (shape regularity), and is star-shaped with respect to
the ball Bρ0hK

(xK), for some xK ∈ K.

We point out that, whenever Th is made of convex polyhedra, the previous assump-
tion is satisfied.
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We fix q, r ∈ N, and set p = (q + 1)2. Let K ∈ Th, and let E ∈ Hr+1(curl;K)
be a solution of

(5.2) ∇× (µ−1∇×E)− ω2εE = 0 in K .

Define H := (iω)−1µ−1∇×E. Then,

∇× (ε−1∇×H)− ω2µH = 0 in K ,

which, since ε and µ are constant, ∇×∇×H = ∇(∇ ·H)−∆H and ∇ ·H = 0,
can be rewritten as

∆H + ω2εµH = 0 in K ,

i.e., each component Hi, i = 1, 2, 3, of H is solution to the homogeneous Helmholtz
equation in K with wavenumber κ := ω

√
εµ.

Finally, introduce the weighted Sobolev norms

‖v‖2r,κ,K =
r∑
j=0

κ2(k−j)|v|2j,K .

The following result is a straightforward application of [38, Lem. 4.5, Cor. 5.5].

Lemma 5.2. Let K be an element of Th satisfying the assumptions stated in this
section, and let λK be the positive parameter depending only on the shape of K
introduced in [38, Th. 3.2], based upon [9]. Then, for every q, r ∈ N, q ≥ 2r + 1,
q ≥ 2(1 + 21/λK ), if Hi ∈ Hr+1(Ω), there exists a set of p = (q + 1)2 plane wave
propagation directions {d`}1≤`≤p, |d`| = 1, and a corresponding −→α i ∈ Cp such that,
for every 0 ≤ j ≤ r,∥∥∥∥∥∥Hi −

∑
1≤`≤p

αi`e
iκx·d`

∥∥∥∥∥∥
j,κ,K

≤C
(
1 + (κhK)q+j−r+8

)
e( 7

4−
3
4ρ)κhK hr+1−j

K

[
q−λK(r+1−j) + (ρ q)−

q−3
2 M

]
‖Hi‖r+1,κ,K

(5.3)

for i = 1, 2, 3. Here, the constant C > 0 only depends on j, r and on the shape of
K, M ≤ 2

√
π p.

Remark 5.3. If instead of assuming the “optimal” set of directions of [38, Lem. 4.5],
we choose the system of directions introduced in [45] and available at the web-
site [49], we have M ≤ 4

√
π p q and the second term in the right-hand side of (5.4)

below is multiplied by q. The asymptotic bound (5.7) is not affected by this change.

Theorem 5.4. Let K be an element satisfying the assumptions stated in this sec-
tion. Then, for every q, r ∈ N, q ≥ 2r + 1, q ≥ 2(1 + 21/λK ), with λK as in
Lemma 5.2, there exists a set of p = (q + 1)2 plane wave propagation directions
with the corresponding set of polarization directions d2p(K) defined by (5.1) such
that, for every E ∈ Hr+1(curl;K) solution of (5.2), there exists ξE ∈ V

E
2p(K) such

that

‖E − ξE‖j−1,κ,K ≤ C κ
−2
(
1 + (κhK)q+j−r+8

)
e( 7

4−
3
4ρ)κhK hr+1−j

K[
q−λK(r+1−j) + (ρ q)−

q−3
2 p
]
‖∇ ×E‖r+1,κ,K

(5.4)

for every 1 ≤ j ≤ r. Here, the constant C > 0 only depends on j, r and the shape
of K.
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Proof. Given the set of directions {d`}1≤`≤p of Lemma 5.2, H can be approximated
in the space generated by

(5.5)
{

(1, 0, 0) eiκx·d` , (0, 1, 0) eiκx·d` , (0, 0, 1) eiκx·d`

}
1≤`≤p

with the same orders of convergence as in (5.3).
For every `, we fix a unit vector a1

` such that (a1
` ,d`)R3 = 0; we set a2

` = a1
` ×d`

and a3
` = d`. Clearly, {ai`}i=1,2,3 is an orthonormal basis of R3; therefore, the basis{

wi
`(x) := ai`e

iκx·d`

}
1≤`≤p
i=1,2,3

generates the same space as the basis in (5.5). Thus, there exist −→α i ∈ Cp, i = 1, 2, 3
(different from those in (5.3)), such that, for every 0 ≤ j ≤ r,∥∥∥∥∥∥∥∥H −

∑
1≤`≤p
i=1,2,3

αi`w
i
`

∥∥∥∥∥∥∥∥
j,κ,K

≤ C
(
1 + (κhK)q+j−r+8

)
e( 7

4−
3
4ρ)κhK hr+1−j

K

[
q−λK(r+1−j) + (ρ q)−

q−3
2 M

]
‖H‖r+1,κ,K .

(5.6)

Notice that, while w1
` and w2

` are Maxwell-Trefftz functions, this is not true for
w3
` ; thus, we want to approximate E in the space generated by{

wi
`(x)

}
1≤`≤p
i=1,2

.

On the other hand, simple calculations give

∇×w1
` = −iκw2

` , ∇×w2
` = iκw1

` , ∇×w3
` = 0 ;

these identities, together with the Trefftz property of E, give (with the same coef-
ficients as in (5.6)):∥∥∥∥∥∥E − µ1/2ε−1/2

∑
1≤`≤p

(−α2
`w

1
` + α1

`w
2
`)

∥∥∥∥∥∥
j−1,κ,K

=

∥∥∥∥∥∥∥∥κ
−2∇×∇×E + µ1/2ε−1/2(iκ)−1

∑
1≤`≤p
i=1,2,3

αi`∇×wi
`

∥∥∥∥∥∥∥∥
j−1,κ,K

=

∥∥∥∥∥∥∥∥
i

ωε
∇×

[
(iωµ)−1∇×E −

∑
1≤`≤p
i=1,2,3

αi`w
i
`

]∥∥∥∥∥∥∥∥
j−1,κ,K

≤ (ωε)−1

∥∥∥∥∥∥∥∥
∇×E
iωµ

−
∑

1≤`≤p
i=1,2,3

αi`w
i
`

∥∥∥∥∥∥∥∥
j,κ,K

def. of H= (ωε)−1

∥∥∥∥∥∥∥∥H −
∑

1≤`≤p
i=1,2,3

αi`w
i
`

∥∥∥∥∥∥∥∥
j,κ,K

(5.6)

≤ (ωε)−1C
(
1 + (κhK)q+j−r+8

)
e( 7

4−
3
4ρ)κhK hr+1−j

K
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q−λK(r+1−j) + (ρ q)−

q−3
2 M

]
‖H‖r+1,κ,K

def. of H= κ−2C
(
1 + (κhK)q+j−r+8

)
e( 7

4−
3
4ρ)κhK hr+1−j

K[
q−λK(r+1−j) + (ρ q)−

q−3
2 M

]
‖∇ ×E‖r+1,κ,K .

Finally, we apply the bound M ≤ 2
√
πp mentioned in Lemma 5.2 and obtain the

assertion with
ξE =

∑
1≤`≤p

(−α2
`w

1
` + α1

`w
2
`) .

�

The following approximation properties in ||| · |||F+
h

–norm can be derived from
Theorem 5.4 by proceeding like in [29, Lem. 3.10, Th. 3.11].

Corollary 5.5. Assume Th to satisfy the assumptions stated in this section. Set
λ = minK∈Th

λK where λK is defined as in Lemma 5.2. Then, for every q, r ∈ N,
r ≥ 3, q ≥ 2r + 1, q ≥ 2(1 + 21/λ), there exists a set of p = (q + 1)2 plane
wave propagation directions {d`}1≤`≤p with the corresponding set of polarization
directions d2p(K) defined by (5.1) such that, for every E ∈ Hr+1(curl; Th) solution
of (2.2), there exists ξh,2p ∈ V 2p such that

|||E − ξh,2p|||F+
h
≤C ω−

5
2hr−

3
2 Φ(q) ‖∇ ×E‖r+1,ω,Ω ,

Φ(q) :=
[
q−λ(r−1) + (ρ q)−

q−3
2 p
] 1

2
[
q−λ(r−2) + (ρ q)−

q−3
2 p
] 1

2
,

where C = C(ωh) > 0 is independent of p and E, but increases as a function of
the product ωh (C depends on the shape of the elements K ∈ Th, r, ϑ, ε, µ and on
the flux parameters).

Proof. Since

‖u‖20,∂K ≤ C ‖u‖0,K (h−1
K ‖u‖0,K + |u|1,K) ∀ u ∈ H1(K) ,

with a constant C > 0 only depending on the shape of K (see [12, Th. 1.6.6]), from
Theorem 5.4, there exists ξh,2p ∈ V 2p such that∥∥E − ξh,2p∥∥2

0,∂K
≤ C e( 7

2−
3
2ρ)κhK

(
1 + (κhK)2q−2r+19

)
κ−4h2r−1

K

·
[
q−λr + (ρ q)−

q−3
2 p
] [
q−λ(r−1) + (ρ q)−

q−3
2 p
]
‖∇ ×E‖2r+1,κ,K

and∥∥∇× (E − ξh,2p)
∥∥2

0,∂K
≤ C e( 7

2−
3
2ρ)κhK

(
1 + (κhK)2q−2r+21

)
κ−4h2r−3

K

·
[
q−λ(r−1) + (ρ q)−

q−3
2 p
] [
q−λ(r−2) + (ρ q)−

q−3
2 p
]
‖∇ ×E‖2r+1,κ,K

for all K ∈ Th, with C > 0 only depending on the shape of K and on r. Thus,

ω
∥∥E − ξh,2p∥∥2

0,Fh
≤ C e( 7

2−
3
2ρ)κh

(
1 + (κh)2q−2r+19

)
κ−3h2r−1

·
[
q−λr + (ρ q)−

q−3
2 p
] [
q−λ(r−1) + (ρ q)−

q−3
2 p
]
‖∇ ×E‖2r+1,κ,Ω

and

ω−1
∥∥∇× (E − ξh,2p)

∥∥2

0,Fh
≤ C e( 7

2−
3
2ρ)κh

(
1 + (κh)2q−2r+21

)
κ−5h2r−3
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·
[
q−λ(r−1) + (ρ q)−

q−3
2 p
] [
q−λ(r−2) + (ρ q)−

q−3
2 p
]
‖∇ ×E‖2r+1,κ,Ω ,

with C > 0 only depending on the shape of the elements K ∈ Th and on r. This,
together with the definition of ||| · |||F+

h
, gives

|||E − ξh,2p|||F+
h
≤ C e( 7

4−
3
4ρ)κh (κh)−

5
2

(
1 + (κh)q−r+

21
2

)
hr+1

·
[
q−λ(r−1) + (ρ q)−

q−3
2 p
] 1

2
[
q−λ(r−2) + (ρ q)−

q−3
2 p
] 1

2 ‖∇ ×E‖r+1,κ,Ω ,

with C > 0 only depending on the shape of the elements K ∈ Th, r, ϑ, ε, µ, and
on the flux parameters (but independent of E, h, p and ω), from which the result
directly follows. �

Remark 5.6. Asymptotically, Φ(q) behaves, for increasing q, as q−λ(r− 3
2 ) . There-

fore, for large q, the estimate of Corollary 5.5 can be written as

(5.7) |||E − ξh,2p|||F+
h
≤ C ω−

5
2

(
h

qλ

)r− 3
2

‖∇ ×E‖r+1,ω,Ω .

5.2. Convergence rates. Inserting the estimates (5.7) within Theorem 4.3 and
Theorem 4.9, we have the following convergence rates.

Theorem 5.7. Assume that the analytical solution E to the Maxwell problem (2.2)
belongs to Hr+1(curl; Ω), r ∈ N, r ≥ 3. Assume the mesh Th to satisfy the as-
sumptions stated in Section 5.1, set λ = minK∈Th

λK where λK is defined as
in Lemma 5.2, and let Eh,p ∈ V 2p(Th), p = (q + 1)2 ∈ N, with q ≥ 2r + 1,
q ≥ 2(1 + 21/λ), be the PWDG numerical solution.

Then, there exist two constants C1, C2 > 0 independent of p but depending on ω
and h only through the product ωh as an increasing function, such that, for large p,

|||E −Eh,p|||Fh
≤ C1 ω

− 5
2

(
h

qλ

)r− 3
2

‖∇ ×E‖r+1,ω,Ω ,

‖E −Eh,p‖H(div;Ω)′ ≤ C2 (ω−
5
2 + ω−4)

hr−2

qλ(r− 3
2 )
‖∇ ×E‖r+1,ω,Ω .

Here, C1 = C1(ωh) and C2 = C2(ωh) depend on the shape of the elements K ∈ Th,
r, ϑ, ε, µ, and on the flux parameters; C2 also depends on Ω, s.r.(Th), and q.u.(Th).

Proof. The first bound is straightforward. To derive the second bound, we simply
notice that, for f(ω, h) defined by (4.6) we have

f(ω, h) ≤ C h− 1
2 (1 + ω−

3
2 ) ,

where C > 0 only depends on Ω and on the product ωh as an increasing function.
�

Remark 5.8. For functions which possess analytic extensions outside K, the con-
vergence rates of the error bound in Lemma 5.2 are exponential in p, as explained
in [38, Rem. 3.3] and [29, Rem. 3.14]. Therefore, if E admits an analytic extension
outside Ω, the convergence of the estimates in Corollary 5.5, Remark 5.6 and thus
in Theorem 5.7 is exponential in p (see [29, Rem. 3.14] and [29, Sec. 4] for numerical
evidence in the Helmholtz case).
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6. Conclusions

We have extended to the time-harmonic Maxwell problem the p–version error
analysis framework developed in [29] for Trefftz-DG methods for the Helmholtz
equation.

Due to the assumptions on the regularity of the solution required in the duality
argument, our analysis is restricted to the case of globally constant material coeffi-
cients, even thought the formulation of the Trefftz-DG methods allows for piecewise
constant coefficients. The obtained error estimates are not in the L2–norm, as for
the Helmholtz problem, but in a weaker norm which, on the other hand, coincides
with the L2–norm for the exact fields.

The presented analysis covers general Trefftz-DG methods, independently of the
particular choice of the local approximation spaces. Possible choices are vector
spherical waves, fundamental solutions, plane waves, or combinations of them; see,
for instance, [8]. Here, for particular plane wave approximation spaces, we have
also derived convergence rates of the corresponding Trefftz-DG method. These
rates might be improved with a more sophisticated best approximation analysis; in
this context, extensions of Vekua’s theory to the Maxwell setting could be worth
exploring.
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harmoniques, Problèmes de Helmholtz 2D et de Maxwell 3D, Ph.D. thesis, Université Paris
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