8 research outputs found

    Genome of a middle Holocene hunter-gatherer from Wallacea

    Get PDF
    Much remains unknown about the population history of early modern humans in southeast Asia, where the archaeological record is sparse and the tropical climate is inimical to the preservation of ancient human DNA1. So far, only two low-coverage pre-Neolithic human genomes have been sequenced from this region. Both are from mainland Hòabìnhian hunter-gatherer sites: Pha Faen in Laos, dated to 7939–7751 calibrated years before present (yr cal bp; present taken as ad 1950), and Gua Cha in Malaysia (4.4–4.2 kyr cal bp)1. Here we report, to our knowledge, the first ancient human genome from Wallacea, the oceanic island zone between the Sunda Shelf (comprising mainland southeast Asia and the continental islands of western Indonesia) and Pleistocene Sahul (Australia–New Guinea). We extracted DNA from the petrous bone of a young female hunter-gatherer buried 7.3–7.2 kyr cal bp at the limestone cave of Leang Panninge2 in South Sulawesi, Indonesia. Genetic analyses show that this pre-Neolithic forager, who is associated with the ‘Toalean’ technocomplex3,4, shares most genetic drift and morphological similarities with present-day Papuan and Indigenous Australian groups, yet represents a previously unknown divergent human lineage that branched off around the time of the split between these populations approximately 37,000 years ago5. We also describe Denisovan and deep Asian-related ancestries in the Leang Panninge genome, and infer their large-scale displacement from the region today.The Toalean burial from Leang Panninge Genomic analysis Discussio

    International consensus definition of low anterior resection syndrome

    Get PDF
    Aim: Low anterior resection syndrome (LARS) is pragmatically defined as disordered bowel function after rectal resection leading to a detriment in quality of life. This broad characterization does not allow for precise estimates of prevalence. The LARS score was designed as a simple tool for clinical evaluation of LARS. Although the LARS score has good clinical utility, it may not capture all important aspects that patients may experience. The aim of this collaboration was to develop an international consensus definition of LARS that encompasses all aspects of the condition and is informed by all stakeholders. Method: This international patient–provider initiative used an online Delphi survey, regional patient consultation meetings, and an international consensus meeting. Three expert groups participated: patients, surgeons and other health professionals from five regions (Australasia, Denmark, Spain, Great Britain and Ireland, and North America) and in three languages (English, Spanish, and Danish). The primary outcome measured was the priorities for the definition of LARS. Results: Three hundred twenty-five participants (156 patients) registered. The response rates for successive rounds of the Delphi survey were 86%, 96% and 99%. Eighteen priorities emerged from the Delphi survey. Patient consultation and consensus meetings refined these priorities to eight symptoms and eight consequences that capture essential aspects of the syndrome. Sampling bias may have been present, in particular, in the patient panel because social media was used extensively in recruitment. There was also dominance of the surgical panel at the final consensus meeting despite attempts to mitigate this. Conclusion: This is the first definition of LARS developed with direct input from a large international patient panel. The involvement of patients in all phases has ensured that the definition presented encompasses the vital aspects of the patient experience of LARS. The novel separation of symptoms and consequences may enable greater sensitivity to detect changes in LARS over time and with intervention
    corecore