17,632 research outputs found

    Rubber friction on (apparently) smooth lubricated surfaces

    Full text link
    We study rubber sliding friction on hard lubricated surfaces. We show that even if the hard surface appears smooth to the naked eye, it may exhibit short wavelength roughness, which may give the dominant contribution to rubber friction. That is, the observed sliding friction is mainly due to the viscoelastic deformations of the rubber by the substrate surface asperities. The presented results are of great importance for rubber sealing and other rubber applications involving (apparently) smooth surfaces.Comment: 7 pages, 15 figure

    Contact mechanics with adhesion: Interfacial separation and contact area

    Full text link
    We study the adhesive contact between elastic solids with randomly rough, self affine fractal surfaces. We present molecular dynamics (MD) simulation results for the interfacial stress distribution and the wall-wall separation. We compare the MD results for the relative contact area and the average interfacial separation, with the prediction of the contact mechanics theory of Persson. We find good agreement between theory and the simulation results. We apply the theory to the system studied by Benz et al. involving polymer in contact with polymer, but in this case the adhesion gives only a small modification of the interfacial separation as a function of the squeezing pressure.Comment: 5 pages, 4 figure

    Contact mechanics: relation between interfacial separation and load

    Get PDF
    I study the contact between a rigid solid with a randomly rough surface and an elastic block with a flat surface. I derive a relation between the (average) interfacial separation uu and the applied normal squeezing pressure pp. I show that for non-adhesive inte raction and small applied pressure, p is proportional to exp (-u/u_0), in good agreement with recent experimental observation.Comment: 4 pages, 3 figure

    Influence of frozen capillary waves on contact mechanics

    Full text link
    Free surfaces of liquids exhibit thermally excited (capillary) surface waves. We show that the surface roughness which results from capillary waves when a glassy material is cooled below the glass transition temperature can have a large influence on the contact mechanics between the solids. The theory suggest a new explanation for puzzling experimental results [L. Bureau, T. Baumberger and C. Caroli, arXiv:cond-mat/0510232] about the dependence of the frictional shear stress on the load for contact between a glassy polymer lens and flat substrates. It also lend support for a recently developed contact mechanics theory.Comment: 4 pages, 2 figure

    Interfacial separation between elastic solids with randomly rough surfaces: comparison of experiment with theory

    Full text link
    We study the average separation between an elastic solid and a hard solid with a nominal flat but randomly rough surface, as a function of the squeezing pressure. We present experimental results for a silicon rubber (PDMS) block with a flat surface squeezed against an asphalt road surface. The theory shows that an effective repulse pressure act between the surfaces of the form p proportional to exp(-u/u0), where u is the average separation between the surfaces and u0 a constant of order the root-mean-square roughness, in good agreement with the experimental results.Comment: 6 pages, 10 figure

    Rolling friction for hard cylinder and sphere on viscoelastic solid

    Full text link
    We calculate the friction force acting on a hard cylinder or spherical ball rolling on a flat surface of a viscoelastic solid. The rolling friction coefficient depends non-linearly on the normal load and the rolling velocity. For a cylinder rolling on a viscoelastic solid characterized by a single relaxation time Hunter has obtained an exact result for the rolling friction, and our result is in very good agreement with his result for this limiting case. The theoretical results are also in good agreement with experiments of Greenwood and Tabor. We suggest that measurements of rolling friction over a wide range of rolling velocities and temperatures may constitute an useful way to determine the viscoelastic modulus of rubber-like materials.Comment: 7 pages, 6 figure
    corecore